• Title/Summary/Keyword: connection rotation capacity

Search Result 81, Processing Time 0.026 seconds

The Basic Study of Semi-Rigid Connections with Reformed T-stubs (개량 T-stub 반강접합부의 기초적 연구)

  • Yu, Bong Huoun;Lee, Myung Jae;Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.479-487
    • /
    • 1997
  • The use of semi-rigid joints can be considered in the beam-to-column connections of buildings. The advantages of semi-rigid joints can be found in the convenience of construction and the ability of effective moment distribution of members. This study is a basic step to acertain the application of middle high rise buildings by using reformed T-stub, of which rotation capacity is thought to be excellent compared with that of existing T-stubs. The tests of tensile and compressive elements of reformed T-stubs were performed to investigate the behavior of reformed T-stubs. The beam-to-column connections using reformed T-stubs are tested under monotonic loading. The structural behaviors of reformed T-stubs were understood qualitatively and the possibility of application of semi-rigid connections with reformed T-stub was acertained.

  • PDF

Cyclic behaviour of beam-to-column welded connections

  • Mele, Elena;Calado, Luis;De Luca, Antonello
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.269-282
    • /
    • 2001
  • In this paper the results of an experimental program devoted to the assessment of the cyclic behaviour of full scale, European type, beam-column subassemblages with welded connections are presented. Six tests (five cyclic and one monotonic) have been carried out on three different series of specimens, encompassing a total of eighteen tests. The three specimen series have been designed with the aim of defining the effect of the column size on the connection behaviour, under different applied loading histories. The tests have evidenced the effect of the column size and panel zone design and of the applied loading history on the cyclic behaviour and failure modes of the connections.

Vulnerability assessment and retrofit solutions of precast industrial structures

  • Belleri, Andrea;Torquati, Mauro;Riva, Paolo;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.801-820
    • /
    • 2015
  • The seismic sequence which hit the Northern Italian territory in 2012 produced extensive damage to reinforced concrete (RC) precast buildings typically adopted as industrial facilities. The considered damaged buildings are constituted by one-storey precast structures with RC columns connected to the ground by means of isolated socket foundations. The roof structural layout is composed of pre-stressed RC beams supporting pre-stressed RC floor elements, both designed as simply supported beams. The observed damage pattern, already highlighted in previous earthquakes, is mainly related to insufficient connection strength and ductility or to the absence of mechanical devices, being the connections designed neglecting seismic loads or neglecting displacement and rotation compatibility between adjacent elements. Following the vulnerabilities emerged in past seismic events, the paper investigates the seismic performance of industrial facilities typical of the Italian territory. The European building code seismic assessment methodologies are presented and discussed, as well as the retrofit interventions required to achieve an appropriate level of seismic capacity. The assessment procedure and retrofit solutions are applied to a selected case study.

Seismic Performance of Beam-to-Column Joints with Wedge Connectors (쐐기형 강재 접합장치를 사용한 보-기둥 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • A new steel connection method using wedges known as Self-Locking Connector has been developed. In this study, experimental investigation was conducted to verify the seismic performance of steel beam-to-column joints with Self-Locking Connectors. Cyclic-loading tests were performed on two beam-to-column joints with Self-Locking Connectors. The two beam-to-column joint specimens were of the cantilever-type and had the same details. Test results showed that beam-to-column joints with Self-Locking Connectors were able to developa total rotation capacity of 0.06 radian, which is greater than the 0.04 radian required for Special Moment Frames. Moreover, their energy absorption capacity was much greater than that of conventional joints.

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

Seismic Performance Assessment of a Modular System with Composite Section (합성단면을 적용한 모듈러 시스템의 내진 성능평가)

  • Choi, Young-Hoo;Lee, Ho-Chan;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • By producing pre-engineered modular system in the factory, It is enable to expedite construction and can be distinguished from two types by the method resisting load. One is the open-sided modular system composed of beams and columns. The other is enclosed modular system composed of panels and studs. Of the modular systems, the open-sided modular system buildings the connection between modules are difficult due to closed member sections, and the overall strength is reduced as a result of local buckling. In this study, in order to solve these problems, a modular system with folded steel members filled with concrete are proposed. The capacity spectrum method presented in ATC 40 is used for seismic performance assessment of the proposed model structure and the structure with conventional steel members. The analysis results show that at the performance point of each model the number and rotation of plastic hinge formed in the proposed modular system are smaller than those in the conventional system. Based on this observation it is concluded that the proposed system with composite sections has superior seismic capacity compared with conventional system.

Effect of RBS on seismic performance of prefabricated steel-concrete composite joints

  • Zhen Zhu;Haitao Song;Mingchi Fan;Hao Yu;Chenglong Wu;Chunying Zheng;Haiyang Duan;Lei Wang
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.405-418
    • /
    • 2024
  • To study the influence of different reduced beam section (RBS) on the mechanical performance of modular boltedwelded hybrid connection joints (MHCJs), this article uses ABAQUS to establish and verify the finite element model (FEM) of the test specimens on the basis of quasi-static test research. Based on, 14 joint models featuring different RBS are devised to evaluate their influence on seismic behavior, such as joint failure mode, bending moment (M)-rotation angle (θ) curve, ductility, and energy consumption. The results indicate that when the flange and web are individually weakened, they alleviate to some extent the concentrated stress of the core module (CM) and column end steel skeleton in the joint core area, but both increase the stress on the flange connecting plate (FCP). At the same time, the impact of both on seismic performance such as bearing capacity, stiffness, and energy consumption is relatively small. When simultaneously weakening the flange and web of the steel beam, forming plastic hinges at the weakened position of the beam end, significantly alleviated the stress concentration of the CM and the damage at the FCP, improving the overall deformation and energy consumption capacity of joints. But as the weakening size of the web increases, the overall bearing capacity of the joint shows a decreasing trend.