• Title/Summary/Keyword: connection failure

Search Result 611, Processing Time 0.025 seconds

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

Evaluation on Flexural Performance of Precast Decks with Ribbed Joint by FEM (유한요소해석에 의한 요철형 이음단면을 갖는 프리캐스트 바닥판의 휨성능 평가)

  • Oh, Hyun-Chul;Chung, Chul-Hun;Kang, Myoung-Gu;Park, Se-Jin;Shin, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, a non-linear FEM model is presented to predict the static flexural performance of precast bridge decks with ribbed joint and is verified with previous experiment results through comparison. The several theory of material properties were applied to each mechanical properties in FEM model and FEM model's input variables were determined through experiment result and parametric study. The FEM results showed good accuracy in predicting the structural performance of the specimens and FEM model's average error rate was 5%. Also, each specimen's cracking aspect and failure mode can be predicted through FEM's plastic strain distribution. Thus, this FEM model can be used effectively for predicting the ultimate behavior and parametric study to development of design formula for joint.

An Experimental Study on the Punching Shear of Slab with Polystyrene Form (폴리스티렌 폼을 사용한 슬래브의 뚫림전단에 관한 실험적 연구)

  • Lee, Hwan-Gu;Kim, Seung-Hun;Kang, In-Suk;Lee, Han-Seung;Lee, Ki-Jang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.213-216
    • /
    • 2008
  • When using the light-weight form with polystyrene on slab, as a result of reducing the weight of slab, the span was increased or size of supporting member for slab was decreased. But capacity of punching shear resistance on the slab using the polystyrene form with plat plate system was deteriorated at critical section around the column. But standard for estimate of internal force did not exist, and established study was insufficient. This study performed the experiment on the punching shear for understanding punching shear force at the slab-column connection using the slab with polystyrene form. The principal variable was size of column, arrangement of polystyrene form and existence of shear reinforcement, and we planned four specimens. From the test, we analysed the crack, failure mode, road-displacement graph and punching shear strength, and capacity of punching shear resistance for slab using the polystyrene form was understood.

  • PDF

Experimental Study of Coupled Shearwalls with different Coupling Member (인방보의 형태에 따른 개구부가 있는 전단벽의 거동 특성에 대한 실험적 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.37-40
    • /
    • 2008
  • Many engineers find the way of improving the old building's structural behavior in the remodeling project which is performed using artificial openings for merging two houses. This test was performed to verify the characteristics of coupling beams according to the shape of the openings. One of test specimen has rectangle shape and the other was made by the circle shaped opening and one has coupling member only as slabs. Additionally, three specimens which have openings have 23% ratio in opening area to total wall area. Consequently, solid type which have no opening area shows shear failure. In the case of CW-RBS which have rectangular shaped opening, cracks are developed in coupling beam significantly. And CW-CS which has circular opening failed in shear showing development of diagonal cracks at wall toes and wall mid-height. It is thought that degradation of the wall strength is under the control of the opening shape and coupling beam-wall connection area.

  • PDF

System seismic performance of haunch repaired steel MRFs : dual panel zone modeling and a case study

  • Lee, Cheol-Ho
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.125-141
    • /
    • 1998
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, little is known about the effects of using such a repair scheme on the global seismic response of structures. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones. To investigate the effects of a repair on seismic performance, a case study was conducted for a 13-story steel frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Modeling the dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 0.017 radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80% (for the Oxnard record) and 70% (for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

Shear Reinforcement for Flat Plate-Column Connections Using Lattice Bars (래티스 철근을 이용한 무량판-기둥 접합부의 전단보강)

  • Ahn Kyung-Soo;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.191-200
    • /
    • 2005
  • Flat plate-column connections are susceptible to brittle punching shear failure, which may result in collapse of the overall structure. In the present study, a new shear reinforcement for the plate-column connection, the lattice shear reinforcement was developed. Experimental study for the lattice shear reinforcement was performed. Shear strength and ductility of the specimens reinforced with the lattice bars were compared with those of unreinforced specimens. The test results showed that the strength and ductility of the specimens with the lattice shear reinforcement were improved by 1.37 and 9.16 times those of the unreinforced specimens, respectively. These results indicates that the lattice shear reinforcement is superior in ductility to the shear stud-rail which is popular in U.S. Based on the test results, the design method for the lattice shear reinforcement was developed.

Seismic Performance of Precast Concrete Beam-Column Connections Using Ductile Rod (연성 강봉을 사용한 프리캐스트 콘크리트 보-기둥 접합부의 내진성능)

  • Lee, Sang-Jin;Hong, Sung-Gul;Lim, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.695-705
    • /
    • 2014
  • Precast concrete (PC) beam-column connections using ductile rods are proposed for earthquake zone. An existing beam-column connection, two PC specimens designed by considering failure modes and a conventional RC specimen were tested under cyclic loading to evaluate the seismic performance. The specimens were designed to satisfy the requirements of current design code. The variables are the yield strength of longitudinal reinforcing bars of PC beams. The test results showed that the proposed system applying smaller yield strength of the longitudinal reinforcing bars at the PC beams than the ductile rods was satisfied with seismic criteria. The deformation capacity and energy dissipation capacity of the proposed PC beam-column connections were greater than those of the existing DDC system.

Network topology automatic configuration and remote fault diagnosis system (네트워크 토폴로지 자동 구성 및 원격 장애진단 시스템)

  • Shim, Kyou-Chul;Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.548-556
    • /
    • 2018
  • NMS (Network Management System) is a system that is used for a small or large networks management. As the size of network becomes larger and the configuration information become complicated, it becomes more difficult to grasp the network status and it takes much time to diagnose the failure of the network equipment. In this paper, to alleviate the problems of NMS we implement web-based network topology automatically using JavaScript, Python, HTML5 based TWaver. The detailed implementation of the system include the automatic collection of the connection information based on the equipment information registered in the NMS system, the implementation of the web-based network topology and the remote fault diagnosis. In the network topology, we can expect to improve the quality of the NMS system through structured data management by adding the configuration management, fault management and performance management functions in a comprehensive manner.

An Experimental Study on the Behavior of T-type Modular Composite profiled Beams (T형 모듈단면 합성 프로파일보의 거동에 관한 실험적 연구)

  • Ahn, Hyung Joon;Lee, Seong Won;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.539-548
    • /
    • 2008
  • This study aims to determine the applicability of the previously published T-type modular profile beam in the manner of producing specimens designed specially for the said purpose, determining their bending and shear behaviors depending on the presence of shear reinforcement, and analyzing the results in comparison with the theoretical equation of plastic deformation. The modular profile beam contributes to bending and shear resistance with the addition of the profile to the form function, and enhances the molding performance through the modular concept. The experimental results showed that the TS series specimens with shear reinforcement have bending behaviors superior to those of the T series specimens without shear reinforcement, which suggests that the used shear reinforcement appropriately bears the shear force. However, it was considered that all the specimens except for the T1-1 specimen failed to have adequate bending performance because of the intermodular slipping caused by the shear failure of the bolts. It is expected that further studies on the T-type modular profile beam, in which shear connectors will be considered as a variable,be performed to develop optimal intermodular connection methods.

Tenon Reinforcement Technique on Tradition Wooden Structures Using Spiral Hardware (나선형 철물을 사용한 전통 목구조의 장부 보강기법)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • The failure of tenon in a traditional wood-framed structure may collapse of the entire structure. This study evaluates the strength and stiffness of tenon joints between the beams and pillars through experimental study and suggests reinforcing method of the tenon joint without dismantling the main structures. The main experimental parameters are the number, distance, shape, and inserting depth of spiral-shaped reinforcing steels. As the thickness of the tenon in beams increases, the strength and the initial shear stiffness of the joint increases and, however, the tenons in pillar becomes weaker, resulting in the safety problem of the structure. It is recommended that three spiral-shaped reinforcing steels be placed in the central parts of the tenon to effectively improve the strength and the shear stiffness of the joint.