• Title/Summary/Keyword: connecting bolt

Search Result 41, Processing Time 0.025 seconds

A case study on the bolt failure of the moving parts of a marine diesel engine (선박용 디젤기관의 운동부 볼트 손상사례에 대한 연구)

  • Kim, Jong-Ho;Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.118-124
    • /
    • 2017
  • To investigate and analyze the cause of the failure of the connecting rod bolt and the crank pin bearing bolt of the diesel engine of this study, the following results were obtained through site surveying, the investigation of literature referring to similar failures, testing and inspection of the fracture surface, and the experience of the researchers. The fractured crank pin bearing bolt of the diesel engine is estimated to be damaged later than the connecting rod bolt. From the shape of fracture surface, it is evident that the failed connecting rod bolt is fractured by fatigue failure due to abnormally repeated loads (e.g. loosening of the connecting bolt, etc.), and is not failed by brittle fractures due to the impact load. The surface of the U-nut on the fractured connecting rod bolt has been worsening due to the improper use of lubricant (agent for prevention of thread fixing) and no usage of separating the each connecting rod on each cylinder. Moreover, there is the possibility that those poor surface conditions of the fractured connecting rod bolt have affected the failure of the connecting rod bolt of the main engine. And it could be assumed that the mechanical characteristic and manufacturing process of the failed connecting rod bolt and crank pin bearing bolt, which were made by a domestic company, conform to the design requirements for those bolts.

Finite Element-Based Fatigue Assessment of Engine Connecting-Rod Bolts (엔진 커넥팅 로드 볼트의 유한요소 피로 평가)

  • Cho, Sung-San;Chang, Hoon;Lee, Kyung-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.14-20
    • /
    • 2008
  • Fatigue fracture of engine connecting-rod bolts is encountered frequently during the developement of high-speed engines. Only the engine dyno test is a currently reliable fatigue durability assessment method. It is because the available rig tests cannot mimic the engine running condition completely, and because the finite element analysis cannot provide realistic stresses near the bolt thread that is modeled as a cylinder. This paper introduces a methodology to assess the fatigue durability of the connecting-rod bolts using the finite element analysis. The methods to contruct the bolt model, to extract the critical bolt stresses for the fatigue analysis, and to obtain the bolt fatigue endurance limit experimentally are discussed. Reliability of the method is verified indirectly.

Vision-based technique for bolt-loosening detection in wind turbine tower

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Choi, Sang-Hoon;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.709-726
    • /
    • 2015
  • In this study, a novel vision-based bolt-loosening monitoring technique is proposed for bolted joints connecting tubular steel segments of the wind turbine tower (WTT) structure. Firstly, a bolt-loosening detection algorithm based on image processing techniques is developed. The algorithm consists of five steps: image acquisition, segmentation of each nut, line detection of each nut, nut angle estimation, and bolt-loosening detection. Secondly, experimental tests are conducted on a lab-scale bolted joint model under various bolt-loosening scenarios. The bolted joint model, which is consisted of a ring flange and 32 sets of bolt and nut, is used for simulating the real bolted joint connecting steel tower segments in the WTT. Finally, the feasibility of the proposed vision-based technique is evaluated by bolt-loosening monitoring in the lab-scale bolted joint model.

PROCEDURE FOR COMPUTER-AIDED PRELOAD SELECTION OF ENGINE CONNECTING-ROD BOLTS

  • Cho, S.S.;Chang, H.;Lee, K.W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.319-325
    • /
    • 2007
  • Preload of critical engine bolts affects the performance and durability of engines. In modern engines that pursue higher power outputs and which are of lighter weight, it becomes more difficult to select an optimal target preload in consideration of various factors such as the role and structural characteristics of joint members, joint load, and fatigue durability of bolts and joint members. A procedure to select the bolt preload using computer-aided engineering technology, especially the finite element method, has been developed. The procedure is illustrated with connecting-rod bolts for which an appropriate preload is known. The selection criteria of target preload and the finite element modeling technique for connecting-rod bolts are also explained.

Optimum Shape Design of the Spring to Improve the Loose-proof Performance of the Lock Nut (로크 너트의 풀림 방지 성능 향상을 위한 스프링의 최적 형상 설계)

  • Song, Hyun-Seok;Chung, Won-Sun;Jung, Do-Hyun;Seo, Young-Kyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The combination of a bolt and nut is the element most widely used for connecting machines and structures. When a load is repetitively applied in the direction right angle to the bolt axis after the bolt and nut is fastened, the nut gradually becomes loose. To solve this problem, in this study, a new type of the loose-proof nut, called a lock nut, is developed. The lock nut is equipped with a spring, and the spring increases the axial force of the bolt. Then, the connection force between the bolt and nut is also augmented. Three dimensional finite element models for the bolt and spring are generated, and the change of the axial force of the bolt while the bolt is being inserted into the spring is analyzed using MSC/Marc, a commercial finite element program. Finally, the optimum shape of the spring is found according to the response surface analysis methodology. The optimization result is verified by comparing the variation of the axial force of the bolt when the bolt is inserted to the initial and optimized spring.

Structural Analysis and Test of Composite Wind Turbine Blade (풍력발전기용 복합재 윈드터빈 블레이드의 구조해석 및 실험)

  • Jung Sung-Hoon;Park Ji-Sang;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.121-124
    • /
    • 2004
  • The purpose of this study is to define the optimized layer pattern of composite wind turbine blade by using a commercial FEM program and to perform the fatigue test of T-Bolt. FEM analysis is done by using a PATRAN and ABAQUS to get a information about stress distribution ,critical deformation shape and get a critical load factor in local buckling analysis. As a result of the linear and nonlinear structural analysis, layer pattern of blade was optimized. T-Bolt is a connecting part of wind turbine blade and rotor hub, therefore T-bolt is cirtical part of wind turbine blade. T-bolt fatigue test is conducted to get a information of life cycle of T-bolt. The test is done by using a hydraulic actuator system

  • PDF

Failure Analysis by Fracture Study of Connecting Rod Bolts in Diesel Engine for Military Tracked Vehicles (군용 궤도차량 디젤엔진의 커넥팅 로드 볼트 파손 검토를 통한 고장원인분석)

  • Oh, Dae San;Kim, Ji Hoon;Seo, Suk Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.191-200
    • /
    • 2020
  • Tracked military vehicles are operated under harsher conditions and climates than ordinary vehicles, and the components require high degrees of reliability and durability. A diesel engine is the main power generator, and when the vehicle breaks down, there is a high possibility of causing a large-scale accident. Therefore, analyzing the cause of engine failure can be important for preventing similar cases that may occur. In this study, we clarified the mechanism of engine failure according to an overhaul test, hardness measurement, and an analysis of the fracture surface. The overhaul test confirmed that a bolt was separated from the connecting rod (number 4). In addition, the hardness measurement results of the connecting rod bolt conformed to the standard, and it was found that the bolt fracture was ductile fracture through an analysis of the fracture surface. Based on the results, it was concluded that damage to a diesel engine of a tracked military vehicle was caused by separating and damage caused by loosening of the connecting rod bolts, resulting in cascading damage. The results of the study could be used as reference examples and could be useful for another study on engine failure analysis.

The failure analysis of patch bonded repair on Al 6061-T6 alloy structures with cracked bolt hole (볼트 균열 홀을 갖는 알루미늄 6061-T6 합금의 패치 본딩 보수/보강 부위에 대한 파괴역학적 해석에 관한 연구)

  • Yoon, Young-Ki;Kim, Guk-Gi;Park, Jong-Jun;Yoon, Hi-Seak
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.148-152
    • /
    • 2000
  • The aluminum alloy 6061-T6 has been successfully used in structural applications especially the pressure vessel of the Advanced Neutron Source research reactor. And aluminum alloys, including 6061-T6, have a face-centered-cubic crystals structure. Under normal circumstances face-centered-cubic crystal structures do not exhibit cleavage fractures even at very lo9w temperatures. In aluminum-based structures, plates frequently find use as connecting links. Mechanical fasteners are often utilized in instances where ease of application, familiarity with fabrication processes, and severe dynamic loading are of concern. Plates frequently find use as connecting elements in structures built from aluminum alloys. Many structural elements employ mechanical fasteners. Twenty and twenty aluminum alloy 6061-T6 plates, representing four different bolt patterns, were mechanically deformed. And variable materials such as A1 6061-T6, Al 2024-T3, Carbon/Epoxy, Glass/Epoxy Composite and Woven fiber composite, are used as patch materials. From this experiment, it has been shown that the strength of patch-repaired specimens is different with the patch materials.

  • PDF