• 제목/요약/키워드: connected control method

검색결과 761건 처리시간 0.025초

마이크로그리드에서 계통연계 인버터의 자율적이며 끊김없는 모드전환 기법 (A Seamless and Autonomous Mode Transfer Method of Grid-connected Inverter in Microgrid)

  • 박성열;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.349-355
    • /
    • 2019
  • A grid-connected inverter with critical loads should be able to supply a stable voltage to critical loads at mode change and during clearing time while detecting unintentional islanding. This study proposes a mode transfer method for a grid-connected inverter with critical loads. The proposed method, which integrates the grid-connected and islanded mode control loops into one control block, provides an autonomous and seamless mode transfer from the current control to the voltage control. Therefore, the proposed scheme can supply a stable voltage to critical loads at mode change and during clearing time. Experimental results are provided to validate the proposed method.

간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환 (Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters)

  • 송인종;최준수;임경배;최재호
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

3상 2레벨 계통연계형 태양광 인버터의 강인제어 (Robust Control of a Grid Connected Three-Phase Two-Level Photovoltaic Inverter)

  • 안경필;이영일
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.538-548
    • /
    • 2014
  • This study provides a robust control of a grid-connected three-phase two-level photo voltaic inverter. The introduced control method uses the cascade control strategy to regulate AC-side current and DC-link voltage. A robust controller with integration action is used for the inner-loop AC-side current control, which maximizes the convergence rate using a linear matrix inequality-based optimization design method and eliminates the offset error. The robust controller design method considers the parameter uncertainty set to accommodate parameter mismatch and un-modeled components in the inverter model. An outer-loop proportional-integral controller is used to regulate DC-link voltage with linearization of DC/AC relation. The proposed control strategy is applied to a grid-connected 100 kW photo voltaic inverter.

병렬구동 유도전동기 벡터제어 기법 (A vector control method for parallel connected induction motor)

  • 변윤섭;김용규;신덕호;김종기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.444-449
    • /
    • 2003
  • This paper presents a vector control method for the parallel-connected motor drive system. In this paper new estimation scheme of rotor flux position is presented to reduce sensitivity due to load difference between the motors. To confirm the validity of the proposed control method, we compare a simulation result of the proposed control method with that of the conventional indirect vector control method. The simulation results show that the proposed control method is effective the step change in load torque.

  • PDF

다연결체 구조물에 대한 형상 최적화 (Shape Optimization for Multi-Connected Structures)

  • 한석영;배현우
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.151-158
    • /
    • 2000
  • The growth-strain method was used for shape optimization of multi-connected structures. It was verified that the growth-strain method is very effective for shape optimization of structures with only one free surface to be deformed. But it could not provide reasonable optimized shape for multi-connected structures, when the growth-strain method is applied as it is. The purpose of this study is to improve the growth-strain method for shape optimization of multi-connected two- and three- dimensional structures. In order to improve, the problems that occurred as the growth-strain method was applied to multi-connected structures were examined, and then the improved method was suggested. The effectiveness and practicality of the developed shape optimization system was verified by numerical examples.

  • PDF

Y 결선된 7상 BLDC 전동기의 구형파 전류 제어를 위한 새로운 전류 제어방식에 관한 연구 (A Study on New Current Control Method for Square Current Wave in Y Connected 7-Phase BLDC Motor Drive System)

  • 문종주;이원;김장목
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.576-585
    • /
    • 2016
  • The current control methods of Y-connected 7 Phase BLDC motor are sine wave current control and square wave control. The sine wave current control method needs dq axis transformation of $7{\times}7$ matrix for current control and very complex. Also this method is not suitable for multi Phase BLDC motor of trapezoidal back emf wave. Therefore, in Y connected multi phase BLDC motor, the square wave current control methods are required. Generally, in the 3Phase BLDC system, Average current control method is used for current control. The average current is obtained that the summation of absolute value of each phase current magnitude is divided by the number of conduction phase. However, if average current control method is applied to multi-phase system, there is a problem that each phase currents are different. This problem affects unbalance of each phase torque and fluctuation of total torque. This paper proposed each phase current control method of Y connected 7Phase BLDC system. Proposed method is used for PI controller of each phase for each phase current control. This method can perfect square wave current control. Also, configuration of the method is easier than DQ axis transformation. Proposed method is verified through simulation and experiments.

Common-mode Voltage Reduction for Inverters Connected in Parallel Using an MPC Method with Subdivided Voltage Vectors

  • Park, Joon Young;Sin, Jiook;Bak, Yeongsu;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1212-1222
    • /
    • 2018
  • This paper presents a model predictive control (MPC) method to reduce the common-mode voltage (CMV) for inverters connected in parallel, which increase the capacity of energy storage systems (ESSs). The proposed method is based on subdivided voltage vectors, and the resulting algorithm can be applied to control the inverters. Furthermore, we use more voltage vectors than the conventional MPC algorithm; consequently, the quality of grid currents is improved. Several methods were proposed in order to reduce the CMV appearing during operation and its adverse effects. However, those methods have shown to increase the total harmonic distortion of the grid currents. Our method, however, aims to both avoid this drawback and effectively reduce the CMV. By employing phase difference in the carrier signals to control each inverter, we successfully reduced the CMV for inverters connected in parallel, thus outperforming similar methods. In fact, the validity of the proposed method was verified by simulations and experimental results.

슬라이딩 모드 기반의 가변이득을 가지는 직접전력제어를 이용한 계통연계형 인버터의 성능개선 (Performance Improvement of a Grid-Connected Inverter System using a Sliding-Mode Based Direct Power Control with a Variable Gain)

  • 이병섭;이준석;이교범
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.57-66
    • /
    • 2012
  • This paper proposes a performance improvement of grid-connected inverter system using sliding-mode based direct power control with a variable gain. The proposed control method determine variable gain of PI controller by using modeling at direct power control (DPC) applied to space vector modulation method. Also, this method use sliding-mode control to maintain excellent dynamic response of character of direct power control (DPC). The validity of the proposed algorithm are verified by simulations and experiments.

Control of Parallel Connected Three-Phase PWM Converters without Inter-Module Reactors

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.116-122
    • /
    • 2015
  • This paper presents a new current sharing control strategy for parallel-connected, synchronised three-phase DC-AC converters employing space vector pulse width modulation (SVPWM) without current sharing reactors. Unlike conventional control methods, the proposed method breaks the paths of the circulating current by dividing the switching cycle evenly between parallel connected equally rated converters. Accordingly, any inter-module reactors or circulating current control will be redundant, leading to reductions in system costs, size, and control algorithm complexity. Each converter in the new scheme employs a synchronous dq current regulator that uses only local information to attain a desired converter current. A stability analysis of the current controller is included together with a simulation of the converter and load current waveforms. Experimental results from a 2.5kVA test rig are included to verify the proposed control method.

단상 계통연계 인버터의 SRF 전력제어 방법 (A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems)

  • 박한얼;김은석;송중호
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.129-135
    • /
    • 2010
  • 화석에너지의 고갈과 환경오염 문제를 해결하기 위한 대안인 신재생 에너지를 이용하는 분산발전 시스템은 핵심 구성 요소인 PWM 인버터의 전력제어가 요구된다. 본 논문에서는 단상 계통연계 인버터 시스템의 전력제어를 위해 계통 임피던스를 고려한 SRF(synchronous-reference-frame) 전력제어 방법을 제안한다. 제안한 SRF 전력제어 방법은 복잡한 계통 임피던스의 추정 없이 계통 임피던스의 공칭값(nominal value)에 기반해 단상 인버터에 전압 기준값(reference)을 제공하여 독립운전 모드와 계통연계 모드에서 모두 운전이 가능함을 나타내었다. 또한, 유효전력과 무효전력의 독립적인 제어가 가능한 장점을 가진다. 계통을 포함하는 시뮬레이션을 통해 제안한 SRF 전력제어 방법의 타당성을 검증한다. 시뮬레이션 결과는 제안한 SRF 전력제어 방법을 통해 단상 계통연계 인버터 시스템의 전력 흐름을 적절히 제어할 수 있음을 보여주고 있다.