• 제목/요약/키워드: connected component labeling

검색결과 55건 처리시간 0.018초

다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현 (An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera)

  • 이병은;;정선태
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2009
  • 다빈치 프로세서는 임베디드 멀티미디어 응용 구현 프로세서로 많이 사용된다. ARM 9 코어 및 DSP 코어의 듀얼 코어로 되어 있어 ARM 코어 에서는 주변 장치 제어, 비디오 입출력 제어, 네트워킹 등을 지원하며, DSP 코어는 보다 효율적인 디지털 신호 처리 연산을 지원한다. 본 논문에서는 본 저자들의 연구실에서 만들고 있는 다빈치 프로세서 기반의 스마트 카메라에 있어서 객체 추적 알고리즘의 최적 구현 방안 노력을 기술한다. 본 논문의 스마트 카메라는 입력 영상에서 관심 객체를 검출하고 이를 추적하며, 분류하고 감시구역에 침입한 경우 이를 IP 프로토콜로 원격 클라이언트에게 통보하는 기능을 보유한다. 객체 추적은 전방 마스크 추출, 전방 마스크 교정, 연결 요소 레이블링, 블롭 지역 계산 등 계산량이 많은 절차들로 구성되어 효율적으로 구현되지 않으면 실시간 처리가 힘들다.

  • PDF

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

High-Speed Maritime Object Detection Scheme for the Protection of the Aid to Navigation

  • Lee, Hyochan;Song, Hyunhak;Cho, Sungyoon;Kwon, Kiwon;Park, Sunghyun;Im, Taeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.692-712
    • /
    • 2022
  • Buoys used for Aid to Navigation systems are widely used to guide the sea paths and are powered by batteries, requiring continuous battery replacement. However, since human labor is required to replace the batteries, humans can be exposed to dangerous situation, including even collision with shipping vessels. In addition, Maritime sensors are installed on the route signs, so that these are often damaged by collisions with small and medium-sized ships, resulting in significant financial loss. In order to prevent these accidents, maritime object detection technology is essential to alert ships approaching buoys. Existing studies apply a number of filters to eliminate noise and to detect objects within the sea image. For this process, most studies directly access the pixels and process the images. However, this approach typically takes a long time to process because of its complexity and the requirements of significant amounts of computational power. In an emergent situation, it is important to alarm the vessel's rapid approach to buoys in real time to avoid collisions between vessels and route signs, therefore minimizing computation and speeding up processes are critical operations. Therefore, we propose Fast Connected Component Labeling (FCCL) which can reduce computation to minimize the processing time of filter applications, while maintaining the detection performance of existing methods. The results show that the detection performance of the FCCL is close to 30 FPS - approximately 2-5 times faster, when compared to the existing methods - while the average throughput is the same as existing methods.

해상 객체 검출 고속 처리를 위한 영상 전처리 알고리즘 설계와 딥러닝 기반의 통합 시스템 (Design of Video Pre-processing Algorithm for High-speed Processing of Maritime Object Detection System and Deep Learning based Integrated System)

  • 송현학;이효찬;이성주;전호석;임태호
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.117-126
    • /
    • 2020
  • 해상 객체 인식은 자율운항선박(MASS)의 지능형 보조 시스템으로써, 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 확인하던 정보를 컴퓨터를 통해 자동으로 인식하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 선박 주변의 물체를 인식하는 방법으로 기존에는 레이더나 소나와 같은 장치로부터 수집된 정보를 통해 확인하였지만, 인공지능의 기술이 발달하면서 선박 지능형 CCTV를 통해 운항 항로에 있는 다양한 부유물을 인식하는 것이 가능하다. 하지만, 자율 선박의 다양한 요구사항과 복잡성 때문에 영상 데이터의 처리속도가 느려지게 된다면 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 이러한 문제를 해결하고자 본 논문에서는 해상 객체를 검출하는 데 있어 영상 데이터의 연산량을 최소화하여 처리속도를 높이기 위한 연구를 진행하였다. 해상 객체 인식의 관심 영역을 확보하기 위해서는 일반적으로 수평선을 찾는데 기존 연구들은 허프 변환 알고리즘을 활용하지만 본 논문에서는 속도를 개선하기 위해 이진화 알고리즘을 최적화하여 실제 객체의 위치와 유사한 영역을 찾는 새로운 방법을 제안한다. 또한, 제안하는 방법의 유용성을 증명하기 위해 딥러닝 CNN을 활용하여 해상 객체 인식 시스템을 구현함으로써 알고리즘의 성능을 평가하였다. 제안하는 알고리즘은 기존 방법의 인식 정확도를 유지하면서 약 4배 이상의 빠른 성능을 얻을 수 있었다.

깊이정보 생성을 위한 영상 분할에 관한 연구 (A study on image segmentation for depth map generation)

  • 임재성
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.707-716
    • /
    • 2017
  • 디스플레이 기기들이 고도화 되면서, 사용자의 목적에 부합하는 영상이 요구되어져 가고 있다. 따라서, 3D 디스플레이에서 필요하게 되는 깊이 정보가 요구될 때 디스플레이 기기들은 객체 기반의 영상 정보를 제공 할 수 있어야 한다. 따라서, 본 논문에서 깊이 정보 생성을 위한 히스토그램 기반의 영상분할 알고리즘을 제안한다. 기존의 K 군집 알고리즘에서 군집의 수를 파라미터화 하여, 영상에 적응적으로 군집 수를 결정할 수 없게 되는 한계를 지닌다. 또한, k 군집 알고리즘이 지니고 있던 지역 최소점에 빠져 영상 분할에 있어 과분할을 야기하는 지역 최소점에 빠지게 되는 경향이 있다. 반면에, 제안하는 알고리즘은 분할해야할 군집 선정에서 계산량을 고려하여 적응적으로 선택 가능할 수 있게 하는 히스토그램 기반의 알고리즘을 설계하여 적응적으로 선택 가능하게 하였다. 기존 알고리즘이 가지고 있었던 지역 최소점에 빠지지 않도록 방지하게 하여 결과 영상에서 객체 기반의 결과를 보여줄 수 있도록 설계 했다. 이 후 연결요소 알고리즘을 통해 과분할 요소를 제거했다. 따라서, 제안하는 알고리즘은 객체 기반의 깊이 정보 결과를 보여 줄 뿐만 아니라, 벤치마크 방법에 비해 확률 랜드 인덱스, 분할 커버링 측면에서도 각각 벤치마크 방법에 비해 0.017, 0.051으로 향상된 결과치를 보여준다.