• Title/Summary/Keyword: connected

Search Result 13,410, Processing Time 0.048 seconds

An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network

  • Ahn, Nam-Su;Park, Sung-Soo
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.221-231
    • /
    • 2011
  • One of the critical issues in wireless sensor network is the design of a proper routing protocol. One possible approach is utilizing a virtual infrastructure, which is a subset of sensors to connect all the sensors in the network. Among the many virtual infrastructures, the connected dominating set is widely used. Since a small connected dominating set can help to decrease the protocol overhead and energy consumption, it is preferable to find a small sized connected dominating set. Although many algorithms have been suggested to construct a minimum connected dominating set, there have been few exact approaches. In this paper, we suggest an improved optimal algorithm for the minimum connected dominating set problem, and extensive computational results showed that our algorithm outperformed the previous exact algorithms. Also, we suggest a new heuristic algorithm to find the connected dominating set and computational results show that our algorithm is capable of finding good quality solutions quite fast.

THE OUTER-CONNECTED VERTEX EDGE DOMINATION NUMBER OF A TREE

  • Krishnakumari, Balakrishna;Venkatakrishnan, Yanamandram Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.361-369
    • /
    • 2018
  • For a given graph G = (V, E), a set $D{\subseteq}V(G)$ is said to be an outer-connected vertex edge dominating set if D is a vertex edge dominating set and the graph $G{\backslash}D$ is connected. The outer-connected vertex edge domination number of a graph G, denoted by ${\gamma}^{oc}_{ve}(G)$, is the cardinality of a minimum outer connected vertex edge dominating set of G. We characterize trees T of order n with l leaves, s support vertices, for which ${\gamma}^{oc}_{ve}(T)=(n-l+s+1)/3$ and also characterize trees with equal domination number and outer-connected vertex edge domination number.

Seamless Transfer Operation Between Grid-connected and Stand-Alone Mode in the Three-phase Inverter (3상 인버터의 계통연계 및 독립운전모드 전환 연구)

  • Lee, Wujong;Jo, Hyunsik;Lee, Hak Ju;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • This paper propose seamless transfer operation between grid-connected and stand-alone mode in the three-phase inverter for microgrid. The inverter operates grid-connected mode and stand-alone mode. Grid-connected mode is the inverter connected to grid and stand-alone mode is to deliver energy to the load from inverter at grid fault. When conversion from gird-connected to stand-alone mode, the inverter changes current control to voltage control. When grid restored, the inverter system is conversion from stand-alone to grid-connected mode. In this case, load phase and grid phase are different. Therefore, synchronization is essential. Thus Seamless transfer operation stand-alone to grid-connected mode. In this paper, propose sealmless transfer operation between grid-connceted and stand-alome mode, and this method is verified through simulation and experiment.

THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA 𝖌=rad(𝖌)⊕ 𝔰𝒍(2,𝔽)

  • WI, MI-AENG
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stelhnacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$. In this paper, $O_p(G)$ in [4] is Q=exp(q), where q=nilrad(g) and a Sylow p-subgroup S in [7] is S=exp(s), where $s=q{\oplus}\{\(\array{0&*\\0&0}\){\mid}*{\in}\mathbb{F}\}$. Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series C_z(G)

  • PDF

NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED DOMINATION NUMBER OF GRAPHS

  • E. Murugan;J. Paulraj Joseph
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.505-519
    • /
    • 2023
  • Let G = (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number γ(G) of G is the minimum cardinality taken over all dominating sets of G. A dominating set S is called a connected dominating set if the subgraph induced by S is connected. The minimum cardinality taken over all connected dominating sets of G is called the connected domination number of G, and is denoted by γc(G). In this paper, we investigate the Nordhaus-Gaddum type results for the connected domination number and its derived graphs like line graph, subdivision graph, power graph, block graph and total graph, and characterize the extremal graphs.

On connected dominating set games

  • Kim, Hye-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1275-1281
    • /
    • 2011
  • Many authors studied cooperative games that arise from variants of dominating set games on graphs. In wireless networks, the connected dominating set is used to reduce routing table size and communication cost. In this paper, we introduce a connected dominating set game to model the cost allocation problem arising from a connected dominating set on a given graph and study its core. In addition, we give a polynomial time algorithm for determining the balancedness of the game on a tree, for finding a element of the core.

A NOTE ON FINITE CONDITIONS OF ORTHOMODULAR LATTICES

  • Park, Eun-Soon
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • We prove the following: every chain-finite OML is path-connected; every finite block of an OML L is path-connected with at least one other block in L; every OML with unifromly finite sites is path-connected.

  • PDF

FUZZY SET CONNECTED FUNCTIONS

  • Chae, G.I.;Thakur, S.S.;Malviya, R.
    • East Asian mathematical journal
    • /
    • v.23 no.1
    • /
    • pp.103-110
    • /
    • 2007
  • The purpose of this paper is to introduce the concept of fuzzy set connected functions and investigate their properties.

  • PDF

Study on Three-dimension Reconstruction to Low Resolution Image of Crops (작물의 저해상도 이미지에 대한 3차원 복원에 관한 연구)

  • Oh, Jang-Seok;Hong, Hyung-Gil;Yun, Hae-Yong;Cho, Yong-Jun;Woo, Seong-Yong;Song, Su-Hwan;Seo, Kap-Ho;Kim, Dae-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.98-103
    • /
    • 2019
  • A more accurate method of feature point extraction and matching for three-dimensional reconstruction using low-resolution images of crops is proposed herein. This method is important in basic computer vision. In addition to three-dimensional reconstruction from exact matching, map-making and camera location information such as simultaneous localization and mapping can be calculated. The results of this study suggest applicable methods for low-resolution images that produce accurate results. This is expected to contribute to a system that measures crop growth condition.

Safety Analysis of Wire rope in the RPSD (RPSD에 설치된 와이어로프의 안전성 해석)

  • Park, Sang-Kyu;Peng, Lu;Kim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.313-319
    • /
    • 2013
  • This study shows the results of safety analysis obtained from the three different wire rope connections in the RPSD (Rope Platform Screen Door) system, which are the rope connected at both ends, the ropes connected by a pulley at both ends, and the ropes connected by many pulleys at both ends. With a constant load applied, the displacements in the ropes connected by a pulley at both ends and the ropes connected by many pulleys at both ends are smaller than that in the rope connected at both ends. There are no any special different displacements between the ropes connected by a pulley at both ends and the ropes connected by many pulleys at both ends. The displacement in the wire rope diameter of 6mm is smallest of 4.83mm and the strains from the displacements in the ropes connected by a pulley at both ends and the ropes connected by many pulleys at both ends are very small.