• Title/Summary/Keyword: conjugated copolymer

Search Result 40, Processing Time 0.033 seconds

Low Molecular Weight PEI Conjugated Pluronic Copolymer: Useful Additive for Enhancing Gene Transfection Efficiency

  • Cho Kyung-Chul;Choi Seung-Ho;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.348-353
    • /
    • 2006
  • For enhancing the gene delivery efficiency of polyplexes, a new formulation was developed using PEI conjugated Pluronic F127 copolymer as an effective additive. Low molecular weight, branched polyethylenimine Mw 600 (LMW BPEI 600) was conjugated to the terminal end of Pluronic F127. The PEI-modified Pluronic copolymers formed a micellar structure in aqueous solution, similar to that of unmodified Pluronic copolymer. PEI modification of Pluronic copolymer increased the size of micelles while concomitantly raising the critical micelle concentration (CMC). The PEI-modified Pluronic copolymer was used as a micellar additive to enhance the gene transfection efficiency of pre-formulated polyelectrolyte complex nanoparticles composed of luciferase plasmid DNA and branched PEI Mw 25k (BPEI 25k) or polylysine Mw 39k (PLL 39k). The luciferase gene expression levels were significantly enhanced by the addition of the BPEI-modified Pluronic copolymer for the two formulations of BPEl and PLL polyplexes. The results indicated that the BPEI-modified Pluronic copolymer micelles ionically interacted on the surface of DNA/BPEI (PLL) polyplexes which might facilitate cellular uptake process.

Synthesis of Phenanthridine-Containing Conjugated Copolymer and OLED Device Properties

  • Park, Lee-Soon;Jeong, Young-Chul;Han, Yoon-Soo;Kim, Sang-Dae;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.588-591
    • /
    • 2004
  • Polyazomethine type conjugated copolymers containing phenanthridine units, poly(PZ-PTI), were synthesized by Schiff-base reaction. This new conjugated copolymer exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as phenanthridine groups. Double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) light emitting diode (LED) exhibited enhanced EL emission and efficiency compared to that of single layer (ITO/poly(PZ-PTI)/Mg) LED. With increasing the thickness of $Alq_3$ layer in double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) LED the emission peak gradually shifted to the single layer (ITO/$Alq_3$/Mg) LED, confirming good hole transporting behaviour of the synthesized conjugated copolymer.

  • PDF

Synthesis and Characterization of a New p-type Amorphous Conjugated copolymer for Solution Process OTFT Material

  • Ju, Jin-Uk;Kang, Peng Tao;Chung, Dae-Sung;Kim, Yun-Hi;Park, Chan-Eon;Kwon, Soon-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.844-846
    • /
    • 2008
  • A new p-type conjugated copolymer, poly(9,10-diethynylanthracene-alt-9,9-didodecylfluorene (PDADF) was synthesized through a Sonogashira coupling reaction. A solution-processed thin film transistor device showed a carrier mobility value of $6.0\;{\times}\;10^{-4}\;cm^2/Vs$ with a threshold voltage of -17 V and a capacitance ($C_i$) of $10\;nF/cm^2$.

  • PDF

Fabrication of a White Organic Light Emitting Diode By Synthesizing a Novel Non-conjugated Blue Emitting Material PPPMA-co-DTPM Copolymer (신규 비공액성 청색발광재료 PPPMA-co-DTPM 공중합체 합성을 통한 백색유기발광소자 제작)

  • Cho, Jae-Young;Oh, Hwan-Sool;Kim, Tae-Gu;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.641-646
    • /
    • 2005
  • To fabricate a single layer white organic light emitting diode (OLED), a novel non-conjugated blue emitting material PPPMA-co-DTPM copolymer was synthesized containing a perylene moiety unit with hole transporting and blue emitting ability and a triazine moiety unit with electron transporting ability. The devices were fabricated using PPPMA-co-DTPM $(PPPMA[70\;wt\%]:DTPM[30\;wt\%])$ copolymer by varying the doping concentrations of each red, green and blue fluorescent dye, by molecular-dispersing into Toluene solvent with spin coating method. In case of ITO/PPPMA-co-DTPM:TPB$(3\;mol\%):C6(0.04\;mol\%):NR(0.015\;mol\%)/Al$ structure, as they were molecular-dispersing into 30 mg/ml Toluene solvent, nearly-pure white light was obtained both (0.325, 0.339) in the CIE coordinates at 18 V and (0.335, 0.345) at 15 V. The turn-on voltage was 3 V, the light-emitting turn-on voltage was 4 V, and the maximum external quantum efficiency was $0.667\%$ at 24.5 V. Also, in case of using 40 mg/ml Toluene solvent, the CIE coordinate was (0.345, 0.342) at 20 V.

A photoswitch from conjugative aromatic polymers

  • Kwon, Tae-Chang;Kim, Yong-Jung;Kim, Yu-Na;Lee, Hyo-Jin;Rameshbabu Krishnamurthy;Sarwade Bhimrao D.;Kim, Eun-Kyoung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.174-174
    • /
    • 2006
  • By condensing two different functional monomers, highly fluorescent aromatic polymers were prepared to produce a conjugated- conjugated spacer-type copolymer or conjugated-non-conjugated spacer-type copolymer. As synthesized polymers were soluble in an organic solvent and showed significantly enhanced optical properties compared to its monomer. Variation in the monomer composition afforded polymers having multifunctionaility such as photochromic-fluorescent polymers. Transparent thin films of the polymer as a solid medium were prepared using spin coating method and fabricated as a photoswitch, which showed photo-induced conductivity switching properties depending on the core monomeric unit in the polymers.

  • PDF

Biotin-Conjugated Block Copolymeric Nanoparticles as Tumor-Targeted Drug Delivery Systems

  • Kim, So-Yeon;Cho, Seung-Hea;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.646-655
    • /
    • 2007
  • To achieve targeted drug delivery for chemotherapy, a ligand-mediated nanoparticulate drug carrier was designed, which could identity a specific receptor on the surfaces of tumor cells. Biodegradable poly(ethylene oxide)/poly$({\varepsilon}-caprolactone)$ (PEG/PCL) amphiphilic block copolymers coupled to biotin ligands were synthesized with a variety of PEG/PCL compositions. Block copolymeric nanoparticles harboring the anticancer drug paclitaxel were prepared via micelle formation in aqueous solution. The size of the biotin-conjugated PEG/PCL nanoparticles was determined by light scattering measurements to be 88-118 nm, depending on the molecular weight of the block copolymer, and remained less than 120 nm even after paclitaxel loading. From an in vitro release study, biotin-conjugated PEG/PCL nanoparticles containing paclitaxel evidenced sustained release profiles of the drug with no initial burst effect. The biotin-conjugated PEG/PCL block copolymer itself evidenced no significant adverse effects on cell viability at $0.005-1.0{\mu}g/mL$ of nanoparticle suspension regardless of cell type (normal human fibroblasts and HeLa cells). However, biotin-conjugated PEG/PCL harboring paclitaxel evidenced a much higher cytotoxicity for cancer cells than was observed in the PEG/PCL nanoparticles without the biotin group. These results showed that the biotin-conjugated nanoparticles could improve the selective delivery of paclitaxel into cancer cells via interactions with over-expressed biotin receptors on the surfaces of cancer cells.

Targeted Drug Delivery Carriers Using Folate Conjugated Poly((R)-3-hydroxy butyrate)-Poly(ethylene glycol) Nanoparticles (Folate가 수식된 Poly((R)-3-hydroxy butyrate)-Poly(ethylene glycol) 나노입자를 이용한 표적지향형 약물전달체)

  • Kwon, Seung-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.515-519
    • /
    • 2009
  • Biodegradable poly((R)-3-hydroxy butyrate) and poly(ethylene glycol) was conjugated to make amphiphilic di-block copolymer. Folate was conjugated at di-block copolymer to target the cancer cells. Copolymer was ready to form the self-assembled micelle whose size was 125~156 nm in aqueous solution. Griseofulvin as a hydrophobic drug was loaded in nanoparticles. Their loading efficiencies were 35~56%. Hydrophobic drug was continuously released for 24 h. Cell viability test showed that folate attached particles were 10% more efficient than the particles without targeting ligands.

RGD-Conjugated Chitosan-Pluronic Hydrogels as a Cell Supported Scaffold for Articular Cartilage Regeneration

  • Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Sang-Young;Lee, Myung-Chul
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.517-523
    • /
    • 2008
  • A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGD-CP was characterized by $^1H$ NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was $0.135{\mu}g$ per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a> 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGD-CP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydro gels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.

Synthesis of an Amphiphilic $\pi$-Conjugated Triblock Copolymer of Poly(9,9-didodecylfluorene-2,7-diyl) and Poly(hydroxyl ethyl methacrylate)

  • Kim, Hyun-Jung;Kim, Hyun-Seok;Kwon, Yong-Ku
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.529-532
    • /
    • 2005
  • A novel amphiphilic, symmetric rod-coil, triblock copolymer (denoted as PHEMA-b-PF-b-PHEMA) of poly(9,9-didodecylfluorene-2,7-diyl) (PF) and poly(hydroxyl ethyl methacrylate) (PHEMA) was synthesized. A $\pi$-conjugated poly(9,9-didodecylfluorene-2,7-diyl) (PF) was used as a rodlike midblock segment and connected with hydrophilic end blocks of poly(hydroxyl ethyl methacrylate) (PHEMA) by using an ATRP technique. The chemical structure of PHEMA-b-PF-b-PHEMA was confirmed by $^{1}H$-NMR and GPC, and its PL properties were investigated in selected solvents. Due to the dissimilarities in molecular conformation and solubility between PHEMA and PF blocks, both block segments were segregated to display a phase-separated morphology on a Si wafer.

Synthesis of a novel non-conjugated Blue emitting material Copolymer and Fabrication of mono color OLED by doping various Fluorescent Dyes

  • Cho Jae Young;Oh Hwan Sool;Yoon Seok Beom;Kang Myung Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.675-679
    • /
    • 2004
  • The existing conjugated blue emitting material polymer which has been used for the two-wavelength method white-emission has good stability and low operating voltage as merits, but the imbalanced carrier transport has been indicated as problem area. We have introduced a novel blue emitting material having perylene moiety unit with hole transporting ability and blue emitting property and triazine moiety unit with electron transporting ability into the same host chain. We have synthesized N-[p-(perylen-3-y1)pheny1]methacry1 amide (PPMA) monomer and [N-(2,4-dipheny1-1,3,5-triazine)pheny1 methacry1 amide] (DTPM) monomer having blue light-emitting unit and electron transport unit, respectively by three steps. A novel non-conjugated blue emitting material Poly[N -[p­(perylene-3-y1) pheny1] methacry1 amide-co-N-[P-(4,6-dipheny1-1,3,5-triazine-2-y1]pheny1]methacry1 amide] (PPPMA-co-DTPM) copolymer having electron transporting unit was synthesized by the solution polymerization of PPMA and DTPM monomers with an AIBN initiator and showed high yield of $75{\%}$. It was very soluble in common organic solvents, and the fabrication of the thin film using a spin coating method was very simple. The PPPMA exhibited a good thermal stability.

  • PDF