• Title/Summary/Keyword: congestion loss rate

Search Result 119, Processing Time 0.028 seconds

THE DISCRETE-TIME ANALYSIS OF THE LEAKY BUCKET SCHEME WITH DYNAMIC LEAKY RATE CONTROL

  • Choi, Bong-Dae;Choi, Doo-Il
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.603-627
    • /
    • 1998
  • The leaky bucket scheme is a promising method that regulates input traffics for preventive congestion control. In the ATM network, the input traffics are bursty and transmitted at high-speed. In order to get the low loss probability for bursty input traffics, it is known that the leaky bucket scheme with static leaky rate requires larger data buffer and token pool size. This causes the increase of the mean waiting time for an input traffic to pass the policing function, which would be inappropriate for real time traffics such as voice and video. We present the leaky bucket scheme with dynamic leaky rate in which the token generation period changes according to buffer occupancy. In the leaky bucket scheme with dynamic leaky rate, the cell loss probability and the mean waiting time are reduced in comparison with the leaky bucket scheme with static leaky rate. We analyze the performance of the proposed leaky bucket scheme in discrete-time case by assuming arrival process to be Markov-modulated Bernoulli process (MMBP).

  • PDF

A Study on Reactive Congestion Control with Loss Priorities in ATM Network (ATM 네트워크에서 우선권을 갖는 반응 혼잡 제어에 관한 연구)

  • Park, Dong-Jun;Kim, Hyeong-Ji
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.697-708
    • /
    • 1996
  • In this paper, we study reactive congestion control with priority in ATM network. The priority schemes for buffer access, partial buffer sharing have been investigated in order to improve the utilization of ATM network resources the network and to satisfy the most demanding traffic class. We consider in this paper a discrete-time queueing model for partial buffer sharing with two Markov modulated Poisson inputs. This model can be used to analyze the the effects of the partial buffer sharing priority scheme on system performance for realistic cases of bursty services. Explicit formulae are derived for the number of cells in the system and the loss probabilities for the traffic. Congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this Paper, we study reactive congestion control, in which each source changes its cell emitting rate a daptively to the traffic load at the switching node. Our intention is that,by incorporating such a congcstion control method in ATM network,more efficient congsestion control is established. We develope an analytical model,and carry out an approximateanalysis of reactive congestion con-trol with priority.Numerical results show that several orders of magnitude improvement in the loss probability can be achieved for the high priority class with little impact on the low priority class performance.And the results show that the reactive congestion control with priority are very effective in avoiding congestion and in achieving the statistical gain.

  • PDF

Congestion Control Algorithms Evaluation of TCP Linux Variants in Dumbbell (덤벨 네트워크에서 TCP 리눅스 변종의 혼잡 제어 알고리즘 평가)

  • Mateen, Ahamed;Zaman, Muhanmmad
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.139-145
    • /
    • 2016
  • Dumbbell is the most basic topology that can be used in almost all kind of network experiment within it or just by little expansion. While Transmission Control Protocol TCP is the basic protocol that is used for the connectivity among networks and stations. TCP major and basic goal is to provide path and services to different applications for communication. For that reason TCP has to transfer a lot of data through a communication medium that cause serious congestion problem. To calculate the congestion problem, different kind of pre-cure solutions are developer which are Loss Based Variant and Delay Based Variant. While LBV keep track of the data that is going to be passed through TCP protocol, if the data packets start dropping that means congestion occurrence which notify as a symptom, TCP CUBIC use LBV for notifying the loss. Similarly the DBV work with the acknowledgment procedure that is used in when data ACK get late with respect to its set data rate time, TCP COMPOUND/VAGAS are examples of DBV. Many algorithms have been purposed to control the congestion in different TCP variants but the loss of data packets did not completely controlled. In this paper, the congestion control algorithms are implemented and corresponding results are analyzed in Dumbbell topology, it is typically used to analyze the TCP traffic flows. Fairness of throughput is evaluated for different TCP variants using network simulator (NS-2).

Study on a Neural Network UPC Algorithm Using Traffic Loss Rate Prediction (트래픽 손실율 예측을 통한 신경망 UPC 알고리즘에 관한 연구)

  • 변재영;이영주정석진김영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.126-129
    • /
    • 1998
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. This paper proposes a new UPC(Usage Parameter Control) mechanism that varies the token generation rate and the buffer threshold of leaky bucket by using a Neural Network controller observing input buffers and token pools, thus achieving the improvement of performance. Simulation results show that the proposed adaptive algorithm uses of network resources efficiently and satisfies QoS for the various kinds of traffics.

  • PDF

An Efficient Transport Protocol for Ad Hoc Networks: An End-to-End Freeze TCP with Timestamps

  • Cho, Sung-Rae;Sirisena, Harsha;Pawlikowski, Krzysztof
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.376-386
    • /
    • 2004
  • In ad hoc networks, loss-based congestion window progression by the traditional means of duplicate ACKs and timeouts causes high network buffer utilization due to large bursts of data, thereby degrading network bandwidth utilization. Moreover, network-oriented feedbacks to handle route disconnection events may impair packet forwarding capability by adding to MAC layer congestion and also dissipate considerable network resources at reluctant intermediate nodes. Here, we propose a new TCP scheme that does not require the participation of intermediate nodes. It is a purely end-to-end scheme using TCP timestamps to deduce link conditions. It also eliminates spurious reductions of the transmission window in cases of timeouts and fast retransmits. The scheme incorporates a receiver-oriented rate controller (rater), and a congestion window delimiter for the 802.11 MAC protocol. In addition, the transient nature of medium availability due to medium contention during the connection time is addressed by a freezing timer (freezer) at the receiver, which freezes the sender whenever heavy contention is perceived. Finally, the sender-end is modified to comply with the receiver-end enhancements, as an optional deployment. Simulation studies show that our modification of TCP for ad hoc networks offers outstanding performance in terms of goodput, as well as throughput.

A Representative-based Multicast Congestion Control for Real-time Multimedia Applications (실시간 멀티미디어 응용을 위한 대표자 기반의 멀티캐스트 혼잡 제어)

  • Song, Myung-Joon;Cha, Ho-Jung;Lee, Dong-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.1
    • /
    • pp.58-67
    • /
    • 2000
  • The paper presents a representative-based feedback mechanism and rate adaptation policy for congestion control in multicast traffic for multimedia applications. In multicast congestion control, feedback implosion occurs as many receivers send feedback to a sender. We propose to use representatives to avoid the feedback implosion. In our scheme, receivers feedback packet loss information periodically and a sender adapts the sending rate based on the information collected through a hierarchy of representatives. A representative is selected in each region and roles as a filter to decrease the number of feedbacks. The simulation results show that the proposed scheme solves the feedback implosion problem and well adapts in a congested situation.

  • PDF

Traffic Flow Control of B-NT for Prevention of Congestion in B-ISDN UNI (B-ISDN UNI에서 폭주를 예방하기 위한 B-NT의 트래픽 흐름 제어)

  • 이숭희;최흥문
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1085-1094
    • /
    • 1994
  • We propose a traffic flow control scheme of B-NT with temporary cell buffering and selective cell discarding to prevent congestion state of the network nodes in B-ISDN systems to reduce or suppress output cell strams towards T interface. We define the states of the network nodes as normal, pre-congestion, and congestion. In a pre-congestion state, the loss-sensitive traffic is temporarily buffered to slow down the rate of the output traffic streams. In a congestion state, the delay-sensitive traffic is selectively discarded to suppress the output traffic streams as possible in addition to the cell buffering. We model the input cell streams and the states of the network nodes with Interrupted Bernoulli Process and 3-state Markov chain to analyze the performance of the proposed scheme in the B-NT system. The appropriate size of the cell buffer is explored by means of simulation and the influence on the performance of the proposed scheme by the network node state is discussed. As results, more than 2,00 cells of buffer size is needed for the control of medium of lower than the medium, degree of congestion occurrence in the network node while the control of high degree of congestion occurrence is nearly impossible.

  • PDF

Wireless TCP Enhancement by Modifying SNOOP (개선된 SNOOP 기법을 이용한 무선 TCP 성능향상 방안)

  • Mun Youngsong;Kang Insuk
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2005
  • Reliable transport protocols such as TCP are tuned to Perform well in traditional networks where packet losses occur mainly because of congestion. In a wireless network, however, packet losses will occur more often due to reasons such as the high bit error rate and the handoff rather than due to congestion. When using TCP over wireless network, TCP responds to losses due to the high bit error rate and the handoff by invoking congestion control and avoidance algorithms, resulting in the degraded end-to-end performance in the wireless network. There have been several schemes for improving TCP performance over wireless links. Among them, SNOOP Is a very promising scheme because of the localized retransmission. In this thesis, an efficient scheme is proposed by modifying SNOOP scheme. The invocation of congestion control mechanism is now minimized by knowing the cause of packet loss.

Adaptive Rate Control Scheme based on Cross-layer for Improving the Quality of Streaming Services in the Wireless Networks (무선 네트워크에서 스트리밍 서비스의 품질향상을 위한 Cross-layer 기반 적응적 전송률 조절 기법)

  • Kim, Sujeong;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1609-1617
    • /
    • 2013
  • TFRC(TCP-Friendly Rate Control) has a performance degradation in wireless networks because it performs congestion control by judging all the losses occurred in wireless networks as a congestion indicator. It is also degraded by the increased Round Trip Time(RTT) due to packet retransmission and contention overhead in the link layer. In this paper, we propose an adaptive rate control scheme based on cross-layer to improve the quality of streaming services in the wireless networks. It provides new RTT estimation and loss discrimination methods to improve transmission rate of TFRC. The simulation results show that the proposed scheme can improve the performance of TFRC.

Segment-based Buffer Management for Multi-level Streaming Service in the Proxy System (프록시 시스템에서 multi-level 스트리밍 서비스를 위한 세그먼트 기반의 버퍼관리)

  • Lee, Chong-Deuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.135-142
    • /
    • 2010
  • QoS in the proxy system are under heavy influence from interferences such as congestion, latency, and retransmission. Also, multi-level streaming services affects from temporal synchronization, which lead to degrade the service quality. This paper proposes a new segment-based buffer management mechanism which reduces performance degradation of streaming services and enhances throughput of streaming due to drawbacks of the proxy system. The proposed paper optimizes streaming services by: 1) Use of segment-based buffer management mechanism, 2) Minimization of overhead due to congestion and interference, and 3) Minimization of retransmission due to disconnection and delay. This paper utilizes fuzzy value $\mu$ and cost weight $\omega$ to process the result. The simulation result shows that the proposed mechanism has better performance in buffer cache control rate, average packet loss rate, and delay saving rate with stream relevance metric than the other existing methods of fixed segmentation method, pyramid segmentation method, and skyscraper segmentation method.