• Title/Summary/Keyword: confusion matrix

Search Result 122, Processing Time 0.036 seconds

Evaluation of Grid-Based ROI Extraction Method Using a Seamless Digital Map (연속수치지형도를 활용한 격자기준 관심 지역 추출기법의 평가)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2019
  • Extraction of region of interest for satellite image classification is one of the important techniques for efficient management of the national land space. However, recent studies on satellite image classification often depend on the information of the selected image in selecting the region of interest. This study propose an effective method of selecting the area of interest using the continuous digital topographic map constructed from high resolution images. The spatial information used in this research is based on the digital topographic map from 2013 to 2017 provided by the National Geographical Information Institute and the 2015 Sejong City land cover map provided by the Ministry of Environment. To verify the accuracy of the extracted area of interest, KOMPSAT-3A satellite images were used which taken on October 28, 2018 and July 7, 2018. The baseline samples for 2015 were extracted using the unchanged area of the continuous digital topographic map for 2013-2015 and the land cover map for 2015, and also extracted the baseline samples in 2018 using the unchanged area of the continuous digital topographic map for 2015-2017 and the land cover map for 2015. The redundant areas that occurred when merging continuous digital topographic maps and land cover maps were removed to prevent confusion of data. Finally, the checkpoints are generated within the region of interest, and the accuracy of the region of interest extracted from the K3A satellite images and the error matrix in 2015 and 2018 is shown, and the accuracy is approximately 93% and 72%, respectively. The accuracy of the region of interest can be used as a region of interest, and the misclassified region can be used as a reference for change detection.

A Study on the Design of Supervised and Unsupervised Learning Models for Fault and Anomaly Detection in Manufacturing Facilities (제조 설비 이상탐지를 위한 지도학습 및 비지도학습 모델 설계에 관한 연구)

  • Oh, Min-Ji;Choi, Eun-Seon;Roh, Kyung-Woo;Kim, Jae-Sung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart factories have received great attention, where production and manufacturing technology and ICT converge. With the development of IoT technology and big data, automation of production systems has become possible. In the advanced manufacturing industry, production systems are subject to unscheduled performance degradation and downtime, and there is a demand to reduce safety risks by detecting and reparing potential errors as soon as possible. This study designs a model based on supervised and unsupervised learning for detecting anomalies. The accuracy of XGBoost, LightGBM, and CNN models was compared as a supervised learning analysis method. Through the evaluation index based on the confusion matrix, it was confirmed that LightGBM is most predictive (97%). In addition, as an unsupervised learning analysis method, MD, AE, and LSTM-AE models were constructed. Comparing three unsupervised learning analysis methods, the LSTM-AE model detected 75% of anomalies and showed the best performance. This study aims to contribute to the advancement of the smart factory by combining supervised and unsupervised learning techniques to accurately diagnose equipment failures and predict when abnormal situations occur, thereby laying the foundation for preemptive responses to abnormal situations. do.

Effectiveness of the Detection of Pulmonary Emphysema using VGGNet with Low-dose Chest Computed Tomography Images (저선량 흉부 CT를 이용한 VGGNet 폐기종 검출 유용성 평가)

  • Kim, Doo-Bin;Park, Young-Joon;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.411-417
    • /
    • 2022
  • This study aimed to learn and evaluate the effectiveness of VGGNet in the detection of pulmonary emphysema using low-dose chest computed tomography images. In total, 8000 images with normal findings and 3189 images showing pulmonary emphysema were used. Furthermore, 60%, 24%, and 16% of the normal and emphysema data were randomly assigned to training, validation, and test datasets, respectively, in model learning. VGG16 and VGG19 were used for learning, and the accuracy, loss, confusion matrix, precision, recall, specificity, and F1-score were evaluated. The accuracy and loss for pulmonary emphysema detection of the low-dose chest CT test dataset were 92.35% and 0.21% for VGG16 and 95.88% and 0.09% for VGG19, respectively. The precision, recall, and specificity were 91.60%, 98.36%, and 77.08% for VGG16 and 96.55%, 97.39%, and 92.72% for VGG19, respectively. The F1-scores were 94.86% and 96.97% for VGG16 and VGG19, respectively. Through the above evaluation index, VGG19 is judged to be more useful in detecting pulmonary emphysema. The findings of this study would be useful as basic data for the research on pulmonary emphysema detection models using VGGNet and artificial neural networks.

Prediction of Safety Grade of Bridges Using the Classification Models of Decision Tree and Random Forest (의사결정나무 및 랜덤포레스트 분류 모델을 이용한 교량 안전등급 예측)

  • Hong, Jisu;Jeon, Se-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.397-411
    • /
    • 2023
  • The number of deteriorated bridges with a service period of more than 30 years has been rapidly increasing in Korea. Accordingly, the importance of advanced maintenance technologies through the predictions of age-induced deterioration degree, condition, and performance of bridges is more and more noticed. The prediction method of the safety grade of bridges was proposed in this study using the classification models of the Decision Tree and the Random Forest based on machine learning. As a result of analyzing these models for the 8,850 bridges located in national roads with various evaluation indexes such as confusion matrix, balanced accuracy, recall, ROC curve, and AUC, the Random Forest largely showed better predictive performance than that of the Decision Tree. In particular, random under-sampling in the Random Forest showed higher predictive performance than that of other sampling techniques for the C and D grade bridges, with the recall of 83.4%, which need more attention to maintenance because of the significant deterioration degree. The proposed model can be usefully applied to rapidly identify the safety grade and to establish an efficient and economical maintenance plan of bridges that have not recently been inspected.

Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network (신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가)

  • Donggyu Song;Seheon Ko;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.388-393
    • /
    • 2023
  • The analysis of engineering data using neural network based on supervised learning has been utilized in various engineering fields such as optimization of chemical engineering process, concentration prediction of particulate matter pollution, prediction of thermodynamic phase equilibria, and prediction of physical properties for transport phenomena system. The supervised learning requires training data, and the performance of the supervised learning is affected by the composition and the configurations of the given training data. Among the frequently observed engineering data, the data is given in log-scale such as length of DNA, concentration of analytes, etc. In this study, for widely distributed log-scaled training data of virtual 100×100 images, available loss functions were quantitatively evaluated in terms of (i) confusion matrix, (ii) maximum relative error and (iii) mean relative error. As a result, the loss functions of mean-absolute-percentage-error and mean-squared-logarithmic-error were the optimal functions for the log-scaled training data. Furthermore, we figured out that uniformly selected training data lead to the best prediction performance. The optimal loss functions and method for how to compose training data studied in this work would be applied to engineering problems such as evaluating DNA length, analyzing biomolecules, predicting concentration of colloidal suspension.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.27-35
    • /
    • 2023
  • In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.

Detection of Cold Water Mass along the East Coast of Korea Using Satellite Sea Surface Temperature Products (인공위성 해수면온도 자료를 이용한 동해 연안 냉수대 탐지 알고리즘 개발)

  • Won-Jun Choi;Chan-Su Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1235-1243
    • /
    • 2023
  • This study proposes the detection algorithm for the cold water mass (CWM) along the eastern coast of the Korean Peninsula using sea surface temperature (SST) data provided by the Korea Institute of Ocean Science and Technology (KIOST). Considering the occurrence and distribution of the CWM, the eastern coast of the Korean Peninsula is classified into 3 regions("Goseong-Uljin", "Samcheok-Guryongpo", "Pohang-Gijang"), and the K-means clustering is first applied to SST field of each region. Three groups, K-means clusters are used to determine CWM through applying a double threshold filter predetermined using the standard deviation and the difference of average SST for the 3 groups. The estimated sea area is judged by the CWM if the standard deviation in the sea area is 0.6℃ or higher and the average water temperature difference is 2℃ or higher. As a result of the CWM detection in 2022, the number of CWM occurrences in "Pohang-Gijang" was the most frequent on 77 days and performance indicators of the confusion matrix were calculated for quantitative evaluation. The accuracy of the three regions was 0.83 or higher, and the F1 score recorded a maximum of 0.95 in "Pohang-Gijang". The detection algorithm proposed in this study has been applied to the KIOST SST system providing a CWM map by email.

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

A Study on the Optimization of Fire Awareness Model Based on Convolutional Neural Network: Layer Importance Evaluation-Based Approach (합성곱 신경망 기반 화재 인식 모델 최적화 연구: Layer Importance Evaluation 기반 접근법)

  • Won Jin;Mi-Hwa Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.444-452
    • /
    • 2024
  • This study proposes a deep learning architecture optimized for fire detection derived through Layer Importance Evaluation. In order to solve the problem of unnecessary complexity and operation of the existing Convolutional Neural Network (CNN)-based fire detection system, the operation of the inner layer of the model based on the weight and activation values was analyzed through the Layer Importance Evaluation technique, the layer with a high contribution to fire detection was identified, and the model was reconstructed only with the identified layer, and the performance indicators were compared and analyzed with the existing model. After learning the fire data using four transfer learning models: Xception, VGG19, ResNet, and EfficientNetB5, the Layer Importance Evaluation technique was applied to analyze the weight and activation value of each layer, and then a new model was constructed by selecting the top rank layers with the highest contribution. As a result of the study, it was confirmed that the implemented architecture maintains the same performance with parameters that are about 80% lighter than the existing model, and can contribute to increasing the efficiency of fire monitoring equipment by outputting the same performance in accuracy, loss, and confusion matrix indicators compared to conventional complex transfer learning models while having a learning speed of about 3 to 5 times faster.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.