We introduce certain conformally invariant h-Finsler connection in a Rizza manifold. Using this connection, we find some conformally invariant Finsler tensors. The conformal flatness and the Kaehlerian Finsler manifold with respect to the above connection are investigated.
The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.
In this paper, we consider the problem of existence of conformal metrics with prescribed mean curvature on the unit ball of ${\mathbb{R}}^n$, $n{\geq}3$. Under the assumption that the order of flatness at critical points of prescribed mean curvature function H(x) is ${\beta}{\in}[1,n-2]$, we give precise estimates on the losses of the compactness and we prove new existence result through an Euler-Hopf type formula.
The special conformally flatness is a generalization of a sub-projective space. B. Y. Chen and K. Yano ([4]) showed that every canal hypersurface of a Euclidean space is a special conformally flat space. In this paper, we study the conditions for the base space B is special conformally flat in the conharmonically flat warped product space $B^n{\times}f\;R^1$.
In [3] and [4], Kitahara, Pak and the author obtained the conformally invariant tensor $B_0$, which is an algebraic Hermitian analogue of the Weyl conformal curvature tensor W in the Riemannian geometry, by the decomposition of the curvature tensor H of the Hermitian connection and the notion of semi-curvature-like tensors of Tanno (see[7]). In [5], the author defined a conformally invariant tensor $B_0$ on a Hermitian manifold as a modification of $B_0$. Moreover he introduced the notion of local conformal Hermitian-flatness of Hermitian manifolds and proved that the vanishing of this tensor $B_0$ together with some condition for the scalar curvatures is a necessary and sufficient condition for a Hermitian manifold to be locally conformally Hermitian-flat.
In this paper, we prove that every weakly Einstein slope metric, which is conformally flat on a manifold M of dimension n ≥ 3, is either a locally Minkowski metric or a Riemannian metric. We also prove the same result for conformally flat weakly Einstein Kropina metrics.
목 적 : 전산화단층 모의치료조준(CT simulation)과 선량 계획 장비(RTP)의 발전으로 많은 저자들에 의해 종양부 위의 선량을 증가시키고 인접한 장기의 선량을 효과적으로 감소시킬 수 있는 3차원 입체 조형 치료(Conformal therapy)와 조사면내 선량 보강 기법(Field in field technique)이 자주 소개되어지고 있다. 이러한 치료 기법은 많은 수의 조사면을 사용함으로써 조사면이 증가할수록 10 MU이하의 극히 적은 기계적 입력치(monitor unit, MU)를 사용하기도 한다. 통상 일반적으로 사용되어지는 선량에 대한 정보(beam data)는 이보다 훨씬 많은 100 MU이상 혹은 그보다 높은 안정적인 출력을 기대할 수 있는 상태에서 측정되어지므로 극히 적은 기계적 입력치에서도 기존에 측정되어진 선량 정보와 동일한 선량분포를 구현할 수 있는지 반드시 확인하여야 한다. 따라서 본 연구에서는 극히 적은 기계적 입력치(MU)에서의 선량적 안정성을 알아보고 향후 정도 관리지침에 활용코자 한다. 대상 및 방법 : 본원에서 사용 중인 선형가속기 Varian 2100C/D의 6 MV, 10 MV(USA)와 Varinan 600C의 4 MV(USA)의 에너지를 사용하여 $10{\times}10cm^2$ 조사면에서 90 MU를 90 MU, 45 MU, 30 MU, 18 MU, 9 MU, 6 MU로 각각 1, 2, 3, 5, 10, 15 회씩 나누어 조사하였다. 전리함(pinpoint farmer type chamber, PTW, GERMANY)를 이용하며 4 MV, 6 MV는 5 cm, 10 MV는 10 cm 깊이, SAD 100 cm에서 물 팬텀을 이용하며 조사면내의 출력을 측정하였고, 측정용 필름(X-omat V, Kodak, USA)을 이용하며 높은 선량을 나타내는 90 MU, 30 MU에서의 편평도와, 대칭도를 비교하였고 일반적인 medical film(AGFA USA)을 이용하여 낮은 선량을 보이는 9MU에서 조사면내 편평도와, 대칭도를 비교하여 선질의 특성 변화를 관찰하였다. 결 과 : 전리함을 이용한 측정에서 2100C/D는 90 MU와 9 MU에서 1 MU 당 선량(cGy/MU)은 6 MV와 10 MV에서 90 MU를 1회에 조사한 것과 비교하여 약 1.6% 정도 증가하였고 2100C는 0.5%, 1.3%가 각각 증가하였다. 600C 또한 1.6% 증가하였으나 6 MU에서 약 3% 차이를 나타내었다. 편평도와 대칭도는 장비와 에너지에 따라 1%에 2.9%까지 차이가 있었으나 전체적으로 적은 MU에서 약간 더 균등하였고 극히 적은 MU로 인한 차이는 확인할 수 없었다. 결 론 : 각각의 실험에서 선량적 차이는 허용되어지는 범위이하의(출력<3%, 편평도<${\pm}3%$, 대칭도<2%, ICRU report 50)오차를 모임으로써 보유한 장비에 따라 정도에 차이는 있을 수 있으나 본원에서 사용 중인 장비에서 극히 적은 MU의 사용이 현저한 선량적 오차를 유발하진 않는 것으로 사료되어진다. 그러나 정도 관리 시 그 오차를 확인하는 과정은 장비의 사용과 수명에 따라 지속적으로 관리되어져야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.