• Title/Summary/Keyword: confluence

Search Result 281, Processing Time 0.021 seconds

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Experimental Study on the Depth-Variations of Confluence Area in Small Urban Channel (도시 소하천 합류부 수심변화에 대한 실험연구)

  • 심기오;이길춘
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.197-204
    • /
    • 1995
  • The runoff from an urban catchment is increased because of the gravitation of the population towards cities. For this reason, water level increment in confluence area makes it impossible to drain internal water and thus produces flood out in upstream areas. In this study, flow variations of main channel are measured which is caused by combining storm sewer into main channel in small watershed. Depth increment in main stream is analyzed due to flowrate and slope in main channel and flowrate, slope is getting steeper, and also due to low flowrate in main stream and high flowrate in tributrary channel. For the degree of confluence, depth ratio decreases when the degree is getting small. As mentioned above, main factors influencing the depth ratio increment of confluence channel are in the order of the degree of confluence, and the flowrate of tributary channel and main channel.

  • PDF

A Study on Characteristics of Flood Flow at a Channel Confluence Connected Asymmetrically with Four Channels (네 개의 수로가 비대칭으로 연결된 수로 합류부에서의 홍수흐름 특성에 관한 연구)

  • Jeong, Woo Chang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.767-781
    • /
    • 2013
  • In this study, the hydraulic model experiments and numerical simulations are carried out to analyze the flood flow characteristics in and around a channel confluence connected asymmetrically with four channels. The numerical model applied in this study is ANSYS CFX (ver. 14) which is the commercial three-dimensional CFD model. As results of comparison between the measured and simulated water depth distributions in and around a channel confluence, the agreement is relatively well satisfied. It can be shown in this study that the water surface profiles in and around a channel confluence are significant different with the two channel directions in which the water are entering and increased inflow.

Numerical Simulation of Flow and Bed Change at the Confluence of the Geum River and Mihocheon (합류부에서 흐름 및 하상변동 수치모의 (금강과 미호천 합류부를 중심으로))

  • Jang, Chang-Lae;Kim, Jeongkon;Ko, Ick Hwan
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.91-103
    • /
    • 2006
  • The objective of this study is to analyze the characteristics of flow and bed change at the wide, shallow confluence of the Geum river and Mihocheon, which has different bed slope, height, and sediment concentration condition between the main channel and tributary. RMA-2 and SED2D were used to simulate flow and bed changes at the site. Flow simulations showed that the overall flow velocity, shear layer and vortex generated at the left bank of the confluence increase as the discharge was increased. Sediment transport simulations indicated that because of the high inflow sediment concentration from Mihocheon, sediment concentration in the main river increases after the confluence, the high sediment concentration band was kept along the shear layer boundary and the left bed was aggraded after confluence.

  • PDF

Analysis of Functional Habitat Groups of Benthic Macroinvertebrates according to Changes in the Riverbed (하상 변화에 따른 저서성 대형무척추동물의 서식기능군 분석)

  • Lee, Seul Hee;Lee, Mi Jin;Seo, Eul Won;Lee, Jong Eun
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.373-380
    • /
    • 2017
  • This study identified the effect of changes in the riverbed on the benthic macroinvertebrate communities. The benthic macroinvertebrates collected from the surveyed sites belonged to 119 species, 65 families, 20 orders, and 7 classes in 4 phyla. The number of Ephemeroptera, Plecoptera, and Trichoptera (E.P.T) species was 42, 10, and 8, respectively, in the tributary, confluence, and Nakdong River sites. Lotic species (Hydropsychidae) showed a high density at the tributary sites, whereas lentic species (Chironomidae) showed a high density at the confluence and Nakdong River sites. Community analysis showed that the Dominance Index (DI) was 0.54 in tributary sites, and dominance indices increased closer to the Nakdong River sites. The diversity index (H') was inversely proportional to DI. The ratio of Burrowers species (BU) at the surveyed sites increased closer to the Nakdong River sites. Analysis of common species showed 37 species (34.6%) between the tributary and confluence sites and 66 species (51.5%) between the confluence and Nakdong River sites.

Junction Flow Analyses by Twp-Dimensional Numerical Model (2차원 수치모형에 의한 합류흐름 해석)

  • Yoon, Tae-Hoon;Jung, Eui-Taek;Park, Jong-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.529-538
    • /
    • 1998
  • The flow configurations at open channel junctions are analyzed by 2-D depth averaged mathematical model. The governing factors of the flow at the junction are found to be discharge ratio between tributary flow and the post confluence combined flow, and confluence angle. Analyzed by these two factors are flow patterns and flow depth variation at the confluence, discharge ratio above which the flow upstresm from the junction is affected by the tributary flow and the geometries of a recirculation region. Further, the flow contraction in the downstream region and the deflection of the tributary flow in the main channel were investigated. The numerical results are compared with the existing experimental data fairly well.

  • PDF

Field Measurement of Suspended Material Distribution at the River Confluence (하천 합류부에서의 부유입자 분포에 대한 현장측정)

  • Kwak, Sunghyun;Lee, Kyungsu;Cho, Hanil;Seo, Yongjae;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.467-474
    • /
    • 2017
  • Each river confluence has the inherent hydraulic and mixing characteristics coming from its bathymetry and topography. It is necessary to make the measurement covering the spatial extent of studying area in order to catch these 2-dimensional intrinsic characteristics. This study focuses to investigate the hydraulic and mixing characteristics at the confluence of Nakdong and Geumho River, from field measurement of flow, water quality, and suspended particle distribution with ADCP (Riversurveyor M9), multi-parameter water quality sonde (YSI6600V2), and submersible system for in-situ observations of particle size distribution and volume concentration (LISST : Laser In-Situ Scattering & Transmissometry), respectively. From the results, it can be found that the field measurement of suspended particle and water quality distribution can be the useful approach to catch the hydraulic and mixing characteristics at a river confluence.

Numerical analysis of lateral geomorphology changes by channel bed deposition and bank erosion at the river confluence section (합류부 구간에서의 하상퇴적과 하안침식에 의한 평면적 하도변화 수치모의)

  • Ji, Un;Jang, Eun Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • The confluence section of rivers forms complex flow pattern due to inflow discharge variation at the mainstream and tributary. Due to complex flow characteristics, bed change and bank erosion at the local section produce lateral geomorphology changes in rivers. In this study, bankline change by bank erosion and bed change were simulated using CCHE2D of 2-dimensional numerical model for quantitative analysis of lateral changes in the confluence section of South Han River and Geumdang Stream. As a result, bankline at the left-side channel of the mainstream was largely changed in the downstream section of the confluence compared to the upstream section. Also, bank erosion in the tributary was hardly occurred and bankline at the left-side tributary and right-side main stream moved to riverside land due to decreased velocity and deposition.

Study on Training levee Dimension for Reduction of River Mouth Occlusion (하구폐색저감을 위한 도류제 제원에 관한 연구)

  • Choi, Chang Jin;Choo, Yean Moon;Kim, Sung Bum;Jee, Hong Kee
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.139-151
    • /
    • 2014
  • In this study, virtual confluence of $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ type flowing into main channel was designed to comprehend occlusion phenomenon of the mouth of river, then performed numerical analysis using the RMA-2 and SED2D model of SMS according to application of 40m, 60m, 80m, 100m Training levee corresponding to main channel width ratio. Results of simulations analysis are summarized as follows. Applying appropriate Training levee length determined by numerical analysis results, Training levee dimension for occlusion reduction was studied through the analysis of velocity, water level, bed variation at the Gamchen confluence and Wichen confluence.

Hydraulic mixing characteristics at a large-scale confluence of Nakdong and Nam River (낙동강 - 남강 합류부 대하천 규모 수리학적 혼합특성 연구)

  • Choi, Suin;Kim, Dongsu;Kim, Youngdo;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1015-1026
    • /
    • 2023
  • The confluence of rivers, where rivers meet, is a place known for complex water mixing dynamics. Sometimes, these rivers flow downstream without mixing. While this non-mixing can pose challenges for water quality management, it also offers the potential for improved water extraction in nearby water intakes (Chilseo). In this study, we analyzed the mixing dynamics at the confluence of the Nakdong River and the Nam River using drone imagery, water quality indicators like Electrical Conductivity, and hydraulic factor Secondary Flow. We found that meandering effects hindered mixing, as shown by the comparison of Secondary Flow and Electrical Conductivity distributions. Additionally, the Chilseo Water Purification Plant downstream of the Nakdong River-Nam River confluence extracted unmixed Nam River water during certain periods.