• Title/Summary/Keyword: confining steel

Search Result 146, Processing Time 0.021 seconds

The Confining Effect of Concrete by Internal Steel Tube (내부 삽입강관에 의한 콘크리트 구속효과 연구)

  • Kim Hong Jung;Han Taek Hee;Kang Young Jong;Jung Doo Suk
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.501-509
    • /
    • 2003
  • The confining effect of concrete was studied when a steel tube is set at the inside face of a hollow reinforced concrete column. To investigate the confining effect by a steel tube, 36 specimens were tested and compared. Test results show that the inserted steel tube provide sufficient confinement to the confining effect depends on the thickness of the steel tube. And also, test results show that the provided confinement by a steel tube increase the strength of concrete.

  • PDF

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

Assessment of Confining Effect of Steel and GFRP Jackets for Concrete (콘크리트 보강강판 및 GFRP 튜브의 구속효과 분석 및 평가)

  • Choi, Eunsoo;An, Dong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2009
  • In this study, the confining effect of the proposed steel jackets and GFRP tubes for concrete was investigated. The new steel jacket differs from the existing steel jacket in terms of installation technique and behavior. Thus, it is necessary to assess its confining effect on concrete. Moreover, the method was compared to GFRP tubes to investigate its strong and weak points. The confining effect of the proposed steel jacket was shown to correspond with that presented in the previous researches. The GFRP jacketing method, however, does not show any confining effect in some cases, according to the tube thickness and concrete peak strength as such, the previous assessment equation cannot be used in such cases. Thus, in this study, a new method of assessing the peak strength of confined concrete was suggested, and the minimum thickness was determined to show the confining effect. Lastly, the ultimate strains of concrete that had been confined through the two methods were compared to assess their ductile behavior.

Strength of Square Shaped CFT Stub Column Considering the Confining Effect of Concrete (콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도)

  • Hwang, Won Sup;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The squash strength and design strength are smaller than the experimental strength of square shaped concrete-filled steel tubular columns in a short concentrically loaded column. This study presents an evaluation procedure accounting for the confining effect of concrete. For the purpose of evaluating a confining effect of concrete, the 3D finite element method was used. The influence of parameters, width-thickness ratios, strength of the concrete and the yield strength of the steel, were examined. The suggested evaluation procedure that assembled three parameters was compared with previous experimental results. Also, the tendency of the confining effect of concrete was examined in the three types of load application.

Confining Effect of Mortar-filled Steel Pipe Splice

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.27-35
    • /
    • 2008
  • Because of several advantages of mortar-filled sleeve splice in reinforced concrete buildings, this method is being applied increasingly at construction sites and various methods of the splice have been developed in Korea and other countries. In order to apply this system in the field, studies on mortar-filled sleeve splice have been mainly experimental research focused on overall structural performance. However, for understanding the structural characteristics of this splice more accurately, we need to study the confining effect of sleeve, which is known to affect bond strength between filling mortar and reinforcing bar, the most important structural elements of the bar splice. Thus, in order to examine the confinement effect of mortar-filled steel pipe sleeve splice, the present study prepared actual-size specimens of steel pipe sleeve splice, and conducted a loading. Using the test results, we analyzed how the confining effect of steel pipe sleeve affects the bond strength of this splice and obtained data for developing more reasonable methods of designing the splice of reinforcement.

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement

  • Ho, J.C.M.;Luo, L.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.889-910
    • /
    • 2012
  • Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.

Inelastic design of high-axially loaded concrete columns in moderate seismicity regions

  • Ho, Johnny Ching Ming
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.559-578
    • /
    • 2011
  • In regions of high seismic risk, high-strength concrete (HSC) columns of tall buildings are designed to be fully ductile during earthquake attack by providing substantial amount of confining steel within the critical region. However. in areas of low to moderate seismic risk, the same provision of confining steel is too conservative because of the reduced seismic demand. More critically, it causes problematic steel congestion in the beam-column joints and column critical region. This will eventually affect the quality of concrete placing owing to blockage. To relieve the problem, the confining steel in the critical region of HSC columns located in low to moderate seismicity regions can be suitably reduced, while maintaining a limited ductility level. Despite the advantage, there are still no guidelines developed for designing limited ductility HSC columns. In this paper, a formula for designing limited ductility HSC columns is presented. The validity of the formula was verified by testing half-scale HSC columns subjected to combined high-axial load and flexure, in which the confining steel was provided as per the proposed formula. From the test results, it is evident that the curvature ductility factors obtained for all these columns were about 10, which is the generally accepted level of limited ductility.

Effect of confinement conditions on the stress-strain relations of concrete (구속조건이 콘크리트 응력-변형률 관계에 미치는 영향)

  • Im Seok-been;Han Taek-Hee;Park Nam-Hoi;Kang Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1211-1220
    • /
    • 2004
  • The confined concrete subjected multi-axial stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effects of concrete, and now are studying in many fields. However, there are few passive confinements by steel tube. Although Mander et al. studied the concrete confined by transverse reinforcements, the confinement by steel tube differs from confining of reinforcements. To investigate the influence of concrete strength increased by confining conditions in steel, 51 specimens confined by different shapes and thicknesses of steel tube were tested and compared.

  • PDF