• 제목/요약/키워드: confining effect of concrete

검색결과 134건 처리시간 0.024초

A New Steel Jacketing Method for Concrete Cylinders and Comparison of the Results with a Constitutive Model

  • Choi, Eun-Soo;Kim, Man-Cheol
    • International Journal of Railway
    • /
    • 제1권2호
    • /
    • pp.72-81
    • /
    • 2008
  • This paper introduces a new steel jacketing method for reinforced concrete columns with lap splice and evaluates its performance by a series of axial tests of concrete cylinders. At first, 45 concrete cylinders were fabricated with varying the design compressive strengths of 21, 27 and 35 MPa and, then, the part of them was jacketed with two-split-steel jackets under lateral confining pressure. The parameters in the first test were the steel jacket's thickness and the existence of adhesive between steel and concrete surface. In the second test, whole steel jackets were used to wrap cylinders with lateral pressure. Also, a double-layer jacket consisted of two steel plates was introduced; a cylinder was jacketed by two steel plates one after another. The effect of the new method was verified through comparing the results of the compressive tests for plain and jacketed cylinders. The steel jacket built following the new method showed good results of increasing the compressive strength and ductility of the jacketed cylinders with respect to the plain cylinders. The thicker steel jackets showed the more increased compressive strength, and the ductility at failure depended on the welding quality on steel jackets. The adhesive between steel and concrete surface reduced the confining effect of the steel jackets. The whole jacket showed more ductile behavior than the two-split jackets. The double-layered jackets were estimated to possess an equal performance to that of a single steel jacket having the same thickness of the double-layered jacket. Finally, the experimental results were compared with the constitutive model of steel-jacketed concrete; which showed a good agreement between the experimental results and the models.

  • PDF

횡방향 구속응력에 의한 자켓팅-콘크리트 공시편 거동 (Behavior of concrete cylinders confined by jacketing with lateral confining stress)

  • 조성철;최은수;정영수;조백순;최지호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.157-160
    • /
    • 2008
  • 국내에는 내진설계가 적용되어지지 않고 설계 시공된 교량과 교각이 상당수 존재하며 지진 발생 시 취약한 소성흰지구간에서 충분한 횡구속 없이 주철근 겹침 이음을 가지고 있는 교각들이 다수 존재하고 있는 실정이다. 내진 성능향상을 위한 국내 많은 보강방법들이 연구되고 있는 추세이며 보다 효과적인 콘크리트 보강기법을 개발하기 위하여 횡방향 구속응력을 도입한 자켓팅 보강공법을 제시하였다. 자켓팅-콘크리트 공시편 압축 실험에서 강도 및 연성도에 영향을 주는 주요 요인 콘크리트은 압축강도, 보강량 및 보강재의 강도 등이다. 본 연구에서는 실시된 실험결과를 바탕으로 콘크리트 비선형 재료를 사용한 해석적 연구를 추가로 실시하여 실험에서 나타난 결과 값과 비교하고 실험 변수와 보강효과에 영향을 미치는 추가적인 변수를 추정하였다. 또한 선행 연구에서 제시된 횡방향구속응력을 사용한 자켓팅 보강공법의 적용성을 높이기 위한 방법들은 어떤 것들이 있는지에 대하여 서술 하였다.

  • PDF

휨을 받는 콘크리트 충전 강관의 계면거동 (Interface Behavior of Concrete Infilled Steel Tube Subjected to Flexure)

  • 이타;정종현;김형주;이용학
    • 대한토목학회논문집
    • /
    • 제35권1호
    • /
    • pp.9-17
    • /
    • 2015
  • 강-콘크리트 슬립실험으로 결정된 계면 계수값을 휨하중을 받는 콘크리트 충전강관 실험의 결과예측에 적용하여 콘크리트 충전강관의 계면거동과 구속효과를 평가하였다. 이를 위해 ${\phi}100mm$${\phi}200mm$의 두 종류 강관 직경을 갖는 콘크리트 충전 강관(CFT)을 제작하여 휨 거동실험을 수행하였으며, 계면거동을 고려하는 유한요소 해석을 수행하여 거동을 예측하였다. 실험 및 해석결과의 분석을 통해 충전 콘크리트에 대한 강관의 구속효과는 강도의 계산에서 고려할 만한 정도의 영향성은 없는 것을 확인하였다. 또한, 강관과 충전콘크리트 간의 계면슬립변위는 하중 재하점 부근에서 가장 크게 발생하고 단부에 가까울수록 감소하며 전단지간 내의 계면에 작용하는 부착력이 단부에서 콘크리트의 압출을 억제함을 유한요소해석 결과를 통해 확인하였다.

샌드위치식 복합구조체에서 하중조건.거동특성에 따른 격벽간격비의 영향 (Effect of Diaphragm Ratio by Load Condition and Behavior in Composite Structures of Sandwich System)

  • 정연주;정광회;김병석;박성수;황일선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.297-302
    • /
    • 2000
  • This paper presents the effect of diaphragm spacing ratio(depth to span) on behavior and capacity of composite steel-concrete structures of sandwich system. Numerical analysis has been performed variety diaphragm ratio, behavior and load condition. As a results of this study, in case of shear behavior and concentrated load, the capacity of structure such as yielding and ultimate load improve according to diaphragm ratio because of concrete confining effect by steel plate and stress redistribution by diaphragm. But in case of bending behavior or uniform load, it proved that diaphragm ratio don't influence on behavior and capacity of composite structures of sandwich system.

  • PDF

나선근에 의한 콘크리트의 횡보강 효과에 관한 실험적 연구 (An Experimental Research on the Confinement Effect of Concrete Specimens with Spirals)

  • 김진근;박찬규
    • 콘크리트학회지
    • /
    • 제7권2호
    • /
    • pp.146-154
    • /
    • 1995
  • 이 연구에서는 중심 압축 하중을 받는 나선근으로 횡보강된 시험체에 대한 횡보강 효과를 실험적으로 규명하였다. 주요 변수는 콘크리트의 압축강도, 나선근의 간격과 나선근의 항복강도로서 콘크리트 압축강도는 27.2, 62.4, 81.2MPa, 나선근 간격은 120, 60, 40, 30, 25, 20mm 나선근의 항복 강도는 451,1375MPa로 하였다. 실험 결과, 동일한 나선근 체적비 및 항복 강도에서 횡보강된 콘크리트의 압축강도증가는 콘크리트의 압축강도에 관계없이 일정하였지만, 최대 응력에서의 축방향 변형도는 압축강도가 증가함에 따라 감소하는 것으로 나타났다.

콘크리트 충전 강관을 갖는 프리스트레스트 합성형 거더의 강-콘크리트 계면 거동 (Nonlinear Finite Element Analysis of Composite Girder with Concrete Infilled Tube)

  • 신동훈;김영훈;이타;강병수;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.386-389
    • /
    • 2006
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages of enhancing local buckling and flexural resistances resulting from the lateral confining effect of concrete due to the interactive reaction in the interface layer of steel tube and concrete. The interface behavior in concrete infilled tube of the test composite girder is analyzed by 8-node zero thickness interface finite element combined with 3-D. elastoplastic concrete constitutive model and 3-D. elastoplastic Mindlin shell element. The interface effects between infillled concrete and steel tube are investigated through the comparision of the experimental and numerical results.

  • PDF

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • 제2권3호
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

콘크리트 파괴거동특성의 실험적 연구I-이축응력시험 (Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test)

  • 이상근;이상민;박상순;한상훈;송영철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

연속섬유 거푸집으로 보강된 압축부재의 역학적 특성에 관한 연구 (A Study on the Mechanical Characteristics of Compression Member Confined the Cast Frame Using Continuous Fiber Mesh)

  • 고훈범
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.99-104
    • /
    • 2002
  • Recently, the continuous fiber materials has become more important materials to repair and to reinforce concrete structural members. Continuous fiber meshes are effective for shear and confining reinforcement and provide excellent durability when combined with high strength mortar The purpose of this study is to verify the relationship between concrete strength and the ductility of inner concrete confined laterally by continuous fiber meshes. For this study, Experimental studies were conducted by compressive members using the cast frame of high strength mortar and continuous fiber meshes. Therefore, the result shows that compressive strength and ductility has improved according to the amount of the fiber meshes, and that the lateral confined effect of members with 3- or 4-axis mesh arrangement is bigger than that of members with 2-axis mesh. These data have to be used to verify the characteristic of concrete structure members reinforced continuous fiber mesh.

Size Effect of Axial Compressive Strength of CFRP Confined Concrete Cylinders

  • Akogbe, Romuald-Kokou;Liang, Meng;Wu, Zhi-Min
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.49-55
    • /
    • 2011
  • The main objective of this investigation is to study size effect on compressive strength of CFRP confined concrete cylinders subjected to axial compressive loading. In total 24 concrete cylinders with different sizes were tested, small specimens with a diameter of 100 mm and a height of 200 mm, medium specimens with a diameter of 200 mm and a height of 400 mm, and big specimens with a diameter of 300 mm and a height of 600 mm. The lateral confining pressure of each specimen is the same and from that hypothesis the small specimens were confined with one layer of CFRP, medium and big specimens were performed by two and three layers of CFRP respectively. Test results indicate a significant enhancement in compressive strength for all confined specimens, and moreover, the compressive strengths of small and medium specimens are almost the same while a bit lower for big specimens. These results permit to conclude that there is no size effect on compressive strength of confined specimens regardless of cylinder dimension.