• Title/Summary/Keyword: confining condition

Search Result 85, Processing Time 0.025 seconds

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

Effect of Specimen Size on Undrained and Drained Shear Characteristics of Granular Soils (공시체의 직경이 사질토의 비배수 및 배수 전단거동에 미치는 영향)

  • Park, Sung-Sik;Choi, Sun-Gyu;Kim, Dong-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.15-23
    • /
    • 2012
  • An internal friction angle, which is one of strength parameters of granular soils, can be obtained from direct shear tests or triaxial tests. The result of traixial tests can be influenced by various experimental conditions such as confining pressure, shearing rate, specimen diameter and height, and end constraint. In this study, undrained and drained shearing behaviors of Nakdong River sand were investigated for loose (Dr = 40%) and dense (Dr = 80%) specimens with 5, 7, and 10 cm in diameter. Friction angles such as undrained total stress friction angle, undrained effective stress friction angle, and drained friction angle obtained from Mohr's stress circle slightly increased and then decreased as a diameter of a specimen increased from 5, 7 to 10 cm, regardless of relative densities. The difference between friction angles caused by different specimen size was at maximum 4.5 degrees for undrained total stress friction angle of dense specimen. In most cases, there was little difference between friction angles of large and small specimens, which was less than 2 degrees. The difference between an effective friction angle from undrained tests and a drained friction angle from drained tests was at maximum 7 degrees for loose samples but negligible for dense samples.

Comparative Study of Hwangnyeonhaedok-tang and Geongangbuja-tang on the Plasma Hormones Level in Mice Exposed to Cold Stress (황련해독탕(黃連解毒湯)과 건강부자탕(乾薑附子湯)의 Cold Stress로 유발된 생쥐의 혈중(血中) 호르몬 농도변화에 대한 비교연구)

  • Han, Sang-Yong;Kang, Han-Ju;Choi, Eun-Sik;Lee, Ki-Nam;Lee, Tae-Hee;Kim, Yun-Kyung
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.144-157
    • /
    • 2013
  • Objectives : The aim of this study was to evaluate the efficacy of Hwangnyeonhaedok-tang (HH) and Geongangbuja-tang (GB) on the plasma hormone level in mice exposed to cold stress. HH and GB are the representative prescriptions of cold and hot property, respectively. Methods : We established cold condition by confining ICR mice to a $4^{\circ}C$ cage for 24 hours, ICR mice were given a HH (100, 300, 1000 mg/kg) or GB (100, 300, 1000 mg/kg) extract orally twice a day for three consecutive days. From the second day, they were given cold stress ($4^{\circ}C$) for twenty four hours. To measure the plasma corticosterone, insulin, thyroxine, epinephrine and norepinephrine levels of mice, their blood samples were collected from cardiac puncture, immediately centrifuged at $4^{\circ}C$. The protein level of HSP70 and JNK was examined using western blot analysis in cortex and hypothalamus. Results : Oral administration of GB more significantly reduced plasma corticosterone level raised by cold stress than HH. Gardeniae Fructus (CJ), the constituent of HH, significantly increased the thyroxine level. Western blot analysis showed that cold stress-induced Heat shock protein 70 (HSP70) expression was increased by HH and GB, HH decreased JNK expression and GB increased JNK expression dose-depently in hypothalamus. Scutellariae Radix (HG), Zingiberis Rhizoma (GG) and Aconiti Tuber (BJ) decreased HSP70 in hypothalamus and GG, BJ decreased HSP70 in cortex as well. Conclusions : These results suggest Geongangbuja-tang (GB) is more effective for ameliorating the stress response caused by cold stress.

A Study on the Rule of Warranty in the English Law of Marine Insurance (영국 해상보험법상 담보(warranty)에 관한 연구)

  • Shin, Gun-Hoon
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.42
    • /
    • pp.275-305
    • /
    • 2009
  • Marine insurance contracts, which intended to provide indemnity against marine risks upon the payment of price, known as a premium, originated in Northern Italy in the late 12th and early 13th centuries. The law and practice were later introduced into England through the Continent. It is, therefore, quite exact that English and European marine insurance law have common roots. Nevertheless, significant divergences between English and European insurance systems occurred since the late 17th century, mainly due to different approaches adopted by English courts. The rule of warranty in English marine insurance was developed and clarified in the second part of the 18th century by Lord Mansfield, who laid the foundations of the modern English law of marine insurance, and developed different approaches, especially in the field of warranty in marine insurance law. Since the age of Lord Mansfield, English marine insurance law has a unique rule on warranty. This article is, therefore, designed to analyse the overall rule of the rule of warranty in English marine insurance law. The result of analysis are as following. First, warranties are incorporated to serve a very significant function in the law of insurance, that is, confining or determining the scope of the cover agreed by the insurer. From the insurer's point of view, such the function of warranties is crucial, because his liability, agreed on the contract of insurance, largely depend on in, and the warranties, incorporated in the contract play an essential role in assessing the risk. If the warranty is breached, the risk initially agreed is altered and that serves the reason why the insurer is allowed to discharge automatically further liability from the date of breach. Secondly, the term 'warranty' is used to describe a term of the contract in general and insurance contract law, but the breach of which affords different remedies between general contract law and insurance contract law. Thirdly, a express warranty may be in any form of words from which the intention to warrant is to be inferred. An express warranty must be included in, or written upon, the policy, or must be contained in some document incorporated by reference into the policy. It does not matter how this is done. Fourthly, a warranty is a condition precedent to the insurer's liability on the contract, and, therefore, once broken, the insurer automatically ceases to be liable. If the breach pre-dates the attachment of risk, the insurer will never put on risk, whereas if the breach occurs after inception of risk, the insurer remains liable for any losses within the scope of the policy, but has no liability for any subsequent losses. Finally, the requirements on the warranty must be determined in according to the rule of strict construction. As results, it is irrelevant: the reason that a certain warranty is introduced into the contract, whether the warranty is material to the insurer's decision to accept the contract, whether or not the warranty is irrelevant to the risk or a loss, the extent of compliance, that is, whether the requirements on the warranty is complied exactly or substantially, the unreasonableness or hardship of the rule of strict construction, and whether a breach of warranty has been remedied, and the warranty complied with, before loss.

  • PDF

A Study on the Estimation of In-situ Undrained Shear Strength Using Effective Stress Paths of Reconstituted Sample by Unconfined Compression Test (재구성 시료의 일축압축시험에서 유효응력경로를 이용한 원지반의 비배수 전단강도 추정에 관한 연구)

  • 박성재;오원택;정경환;여주태
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.93-102
    • /
    • 2003
  • Unconfined compression test (UC) has been widely used to determine the undrained shear strength ($c_u$) of clay, because it is convenient and economical. However, UC can not represent the behaviour of in-situ stress condition and the strength obtained by the test is generally underestimated compared to that of triaxial compression, due to no confining pressure. Therefore, a simple and practical method to correct the ($c_u$) for sample disturbance and to be used in geotechnical practice is needed. This study is aimed at proposing the method to estimate in-situ undrained shear strength from UC with suction measurement. The proposed method is based on theoretical shear strength equation of perfect sample (Noorany & Seed, 1965), and effective overburden stress and analysis results ($A_f,\phi'$) of effective stress behaviour by UC are needed for the equation. The shear resistance angle ($\phi'$) can be simply estimated through the result that $K_f$-line slope of the UC is 1.6 times higher than that of triaxial compression test. The result of this study shows that the measured strength by this method is very similar to that of the undrained shear strength by triaxial compression test (CK$_0$UC).

Evaluation of Minimum Spiral Reinforcement Ratio of Circular RC Columns (철근콘크리트 원형기둥의 나선철근 최소철근비에 대한 평가)

  • Kim, Young-Seek;Kim, Hyeong-Gook;Park, Cheon-Beom;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.

Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation

  • Ning, Jianguo;Liu, Xuesheng;Tan, Yunliang;Wang, Jun;Tian, Chenglin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-629
    • /
    • 2015
  • Influenced by various mining activities, fractures in rock masses have different densities, set numbers and lengths, which induce different mechanical properties and failure modes of rock masses. Therefore, precisely expressing the failure criterion of the fractured rock influenced by coal mining is significant for the support design, safety assessment and disaster prevention of underground mining engineering subjected to multiple mining activities. By adopting PFC2D particle flow simulation software, this study investigated the propagation and fractal evolution laws of the micro cracks occurring in two typical kinds of rocks under uniaxial compressive condition. Furthermore, it calculated compressive strengths of the rocks with different confining pressures and box-counting dimensions. Moreover, the quantitative relation between the box-counting dimension of the rocks and the empirical parameters m and s in Hoek-Brown strength criterion was established. Results showed that with the increase of the strain, the box-counting dimension of the rocks first increased slowly at the beginning and then exhibited an exponential increase approximately. In the case of small strains of same value, the box-counting dimensions of hard rocks were smaller than those of weak rocks, while the former increased rapidly and were larger than the latter under large strain. The results also presented that there was a negative correlation between the parameters m and s in Hoek-Brown strength criterion and the box-counting dimension of the rocks suffering from variable mining activities. In other words, as the box-counting dimensions increased, the parameters m and s decreased linearly, and their relationship could be described using first order polynomial function.

Title: Research on Lee Won-ik(李元翼)'s the view on people(百姓) and the view on politics in Seonjo(宣祖) (선조대 이원익의 백성관과 정치관 연구)

  • Lee, Wook Keun
    • (The)Study of the Eastern Classic
    • /
    • no.72
    • /
    • pp.217-264
    • /
    • 2018
  • The purpose of this research is to understand the view on people(百姓) and Lee Won-ik(李元翼)'s view on politics, comparing with Seonjo(宣祖)'s view on them. They as political actors sufficiently cognized the condition of life of people had been very desperate. Seonjo had approached from politics to the life of people, while Lee from the life of people to politics. The former has the precariousness of transformation and instrumentalisation of the life of people. The latter has the possibility of the life of people to lead the politics. Lee's stance was on the latter aspect. He had tried to conceive the people as they are, in other words as reality, not as they should be, in other words as idea. He refrained the elucidation of people from confining it within dichotomy structure of ruling-ruled. He had tried to conceive the organic relationship between people and other existences within community. He did not give knowledge-centered question of what is the life of people, but gave situation-phenomenon-centered question of how people has been living. This approach eulciates Lee's focus on the problems of Gongyi(工役), military service(軍役), Labour service(?役), the reduction and exemption of the tax, and the appointment of provincial officer(守令). As for Lee Won-ik, the best form of life of people is to make people have mind to deserve to live, to economize their power(寬民力), to make them savor their life(樂民生), and to make their life easy(安民).

Dynamic Behavior Characteristics of Group Piles with Relative Density in Sandy Soil (건조 모래지반의 상대밀도에 따른 무리말뚝의 동적거동특성)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2023
  • The lateral load which is applied to the pile foundation supporting the superstructure during an earthquake is divided into the inertia force of the upper structure and the kinematic force of the ground. The inertia force and the kinematic force could cause failure to the pile foundation through different complex mechanisms. So it is necessary to predict and evaluate interaction of the ground-pile-structure properly for the seismic design of the foundation. The interaction is affected by the lateral behavior of the structure, the length of the pile, the boundary conditions of the head, and the relative density of the ground. Confining pressure and ground stiffness change accordingly when the relative density changes, and it results that the coefficient of subgrade reaction varies depending on each system. Horizontal bearing behavior and capacity of the pile foundation vary depending on lateral load condition and relative density of the sandy soil. Therefore, the 1g shaking table tests were conducted to confirm the effect of the relative density of the dried sandy soil to dynamic behavior of the group pile supporting the superstructure. The result shows that, as the relative density increases, maximum acceleration of the superstructure and the pile cap increases and decreases respectively, and the slope of the p-y curve of the pile decreases.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.