• Title/Summary/Keyword: confined pressure

Search Result 178, Processing Time 0.02 seconds

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Prediction of the Maximum Strain of Circular Concrete Columns Confined with Fiber Composites (섬유에 의하여 구속된 원형 콘크리트 기둥의 최대변형률 예측)

  • Lee, Jung-Yoon;Jeong, Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.726-736
    • /
    • 2003
  • Concrete columns confined with high-strength fiber composites can enhance its strength as well as maximum strain. In recent years, several equations have been developed to predict the behavior of the concrete columns confined with fiber composites. While the developed equations can predict the compressive strength of the confined columns with reasonable agreement, these equations are not successful in predicting the observed maximum strain of the columns. In this paper, a total of 61 test results is analysed to propose an equation to predict both compressive strength and maximum strain of concrete cylinders. The proposed equation takes into account the effects of confining pressure and cylinder size. Furthermore, in order to verify the proposed stress-strain curve for concrete cylinders, six cylindrical specimens were tested. Comparisons between the observed and calculated stress-strain curves of the tested cylinders showed reasonable agreement.

Constitutive Model for a Confined Concrete Cylinder with an Unbonded External Steel Jacket

  • Roh, Young-Sook
    • Architectural research
    • /
    • v.17 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • Early investigations focused mainly on manipulating the confinement effect to develop a reinforced concrete column with lateral hoops. Based on this legacy model, Li's model incorporated the additional confinement effect of a steel jacket. However, recent experiments on plain concrete cylinders with steel jackets revealed relatively large discrepancies in the estimates of strength enhancement and the post-peak behavior. Here, we describe a modified constitutive law for confined concrete with an unbonded external steel jacket in terms of three regions for the loading stage. We used a two-phase heterogeneous concrete model to simulate the uniaxial compression test of a $150mm{\times}300mm$ concrete cylinder with three thicknesses of steel jackets: 1.0 mm, 1.5 mm, and 2.0 mm. The proposed constitutive model was verified by a series of finite element analyses using a finite element program. The damaged plasticity model and extended Drucker-Prager model were applied and compared in terms of the level of pressure sensitivity for confinement in 3D. The proposed model yielded results that were in close agreement with the experimental results.

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

Analysis of Ship Squat in Confined Water Using CFD (전산유체역학을 이용한 제한수로에서의 선박 침하 해석)

  • Shin, Hyun-Kyoung;Choi, Si-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.317-324
    • /
    • 2011
  • When a ship proceeds in confined water, like canal, the water ahead of ship is pushed by hull. This pushed water returns to the side and under the hull, and this returned water will make fluid velocity higher at the side and under the hull, compared to the case in the infinite water depth. Due to the higher velocity, the pressure under the hull will decrease, resulting in the ship drop. This phenomenon is called "ship squat" and ship squat will result in various marine accidents. In this paper, for predicting ship squat, numerical calculation was carried out using commercial CFD code, FLUENT. To confirm wave pattern profile around the ship, VOF(Volume of Fluid) method was applied. The calculated results were compared with other paper's results and empirical methods.

Analysis of actively-confined concrete columns using prestressed steel tubes

  • Nematzadeh, Mahdi;Haghinejad, Akbar
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.477-488
    • /
    • 2017
  • In this paper, an innovative technique for finite element (FE) modeling of steel tube-confined concrete (STCC) columns with active confinement under axial compressive loading is presented. In this method, a new constitutive model for the stress-strain relationship of actively-confined concrete is proposed. In total, 14 series of experimental STCC stub columns having active confinement were modeled using the ABAQUS software. The results obtained from the 3D model including the compressive strength at the initial peak point and failure point, as well as the axial and lateral stress-strain curves were compared with the experimental results to verify the accuracy of the 3D model. It was found that there existed a good agreement between them. A parametric study was conducted to investigate the effect of the concrete compressive strength, steel tube wall thickness, and pre-stressing level on the behavior of STCC columns with active confinement. The results indicated that increasing the concrete core's compressive strength leads to an increase in the compressive strength of the active composite column as well as its earlier failure. Furthermore, a reduction in the tube external diameter-to-wall thickness ratio affects the axial stress-strain curve and the confining pressure, while increasing the pre-stressing level has a negligible effect on the two.

A failure criterion for RC members under triaxial compression

  • Koksal, Hansan Orhun
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.137-154
    • /
    • 2006
  • The reliable pushover analysis of RC structures requires a realistic prediction of moment-curvature relations, which can be obtained by utilizing proper constitutive models for the stress-strain relationships of laterally confined concrete members. Theoretical approach of Mander is still a single stress-strain model, which employs a multiaxial failure surface for the determination of the ultimate strength of confined concrete. Alternatively, this paper introduces a simple and practical failure criterion for confined concrete with emphasis on introduction of significant modifications into the two-parameter Drucker-Prager model. The new criterion is only applicable to triaxial compression stress state which is exactly the case in the RC columns. Unlike many existing multi-parameter criteria proposed for the concrete fracture, the model needs only the compressive strength of concrete as an independent parameter and also implies for the influence of the Lode angle on the material strength. Adopting Saenz equation for stress-strain plots, satisfactory agreement between the measured and predicted results for the available experimental test data of confined normal and high strength concrete specimens is obtained. Moreover, it is found that further work involving the confinement pressure is still encouraging since the confinement model of Mander overestimates the ultimate strength of some RC columns.

Experimental Study of Water Penetration Rate Via Graphene Oxide Membrane According to Driven Pressure Difference (산화 그래핀 맴브레인의 물투과 속도와 차압 조건 간 상관관계에 대한 실험적 연구)

  • Kim, Ji-Min
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.858-864
    • /
    • 2018
  • Graphene oxide (GO) laminate is a new promising material for water purification system, which has extraordinary permeability only for water molecule. It consists of numerous nano-channels, in which water molecules could be nano-confined, resulting in slip of the molecules for very fast transportation speed. In this study, water penetration rate via different thickness of GO membrane according to driven pressures are measured experimentally, so that speed of water molecules and permeability are evaluated. Generally, water penetration rate via a membrane with macroscopic-sized channel increases linearly with pressure difference between up and bottom side of the membrane, but that via GO membrane approaches asymptotic value (i.e. saturation) as like a log function. Moreover, the permeability of GO membrane was observed in inverse proportion to its thickness. Based on the experimental observations, a correlation for volume flux via GO membrane was suggested with respect to its thickness and external pressure difference.

Analysis of the Pressure Behavior with the Partial Rupture in Closed Vessel During Gaseous Explosion (밀폐공간에서 가스폭발에 의한 개구발생 후의 압력변화에 대한 해석)

  • 윤재건;조한창;신현동
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.40-47
    • /
    • 1999
  • A numerical study on gaseous explosion was carried out to predict the transient pressure behavior with the partial rupture in confined vessels. Equations, assumptions and solutions for central ignition of premixed gases in closed spherical vessels are proposed with various equivalence ratios of gas fuel, as $CH_4$ and $C_3H_8$, vent areas and vent opening pressures. Given vent opening pressure in a vessel, the magnitude of second peak pressure results from the vent areas and burning velocity, varied by equivalence ratio of gas fuel. In a living room of an apartment, the higher second peak pressure than the vent pressure is not appeared due to its large window areas. As vent opening pressure is higher, the larger damage by gaseous explosion is expected and the larger vent area is necessary for relieving the damage. In the same concentration, the gaseous explosion by propane rather than methane shows the larger damage due to its higher adiabatic flame temperature and equivalence ratio.

  • PDF

Assessment Method of Geosynthetic Pullout Resistance Considering Soil Confinement Effect (구속효과를 고려한 토목섬유의 인발저항력 평가기법)

  • 방윤경;이준대;전영근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.135-148
    • /
    • 2001
  • In this study, an assessment method was proposed to evaluate the pullout resistance between geosynthetic and backill soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. For this analysis friction characteristics of geosynthetic-soil and stress-strain relationships subjected to soil confined pressure were investigated by performing the laboratory pullout tests for three types of geosynthetics and performing the confined extension tests far seven types of geosynthetics having geotextiles, composite geosynthetics and geogrids. A comparison was made between unconfined an confined moduli far each geosynthetic material to quantify the soil confinement effect on stress-strain properties. A comparison was also made between the relative increase of moduli at the same strain level among the seven geosynthetic materials to demonstrate the different responses of these geosynthetic materials under soil confinement. Based on the proposed procedure, it was shown that values of the increased tensile force are applicable fur the evaluation of friction strengths between five types of geosynthetics and sands in light of the soil confinement effect.

  • PDF