• 제목/요약/키워드: cone model

검색결과 369건 처리시간 0.024초

Hybrid model-based and deep learning-based metal artifact reduction method in dental cone-beam computed tomography

  • Jin Hur;Yeong-Gil Shin;Ho Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2854-2863
    • /
    • 2023
  • Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator (CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam computed tomography (CBCT). Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray attenuation model with respect to X-ray transmission length, which calculates associated parameters numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are required. The network consists of an encoder that separates artifacts and content and a decoder for the content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images. The proposed approach is systematically assessed using a dental phantom with two types of metal objects for qualitative and quantitative comparisons. Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal while preserving native structures. Conclusion: This study may significantly improve the detection of areas of interest in many dentomaxillofacial applications.

점성토에 있어서 지반의 비등방성을 고려한 콘 관입속도에 관한 연구 (Study on Cone Penetration Rate and Anisotropy in Cohesive Soils)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.559-566
    • /
    • 2000
  • 본 연구에서는 비등방성 응력조건 하에서 콘 관입속도가 콘 관입시험 결과에 미치는 영향을 연구하기 위하여 유한요소해석 및 Calibration Chamber를 이용한 Miniature Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 비등방성을 고려하기 위하여 Anisotropic Soil Model이 유한요소해석에 이용되었으며 LSU/CALCHAS(Louisiana State University Calibration Chamber System)가 Miniature Piezocone의 관입시험에 이용되었다. 콘 관입속도의 영향이외에도 OCR 및 필터위치의 영향을 고찰하였다.

  • PDF

The Kwak03 Color Appearance Model

  • 곽영신
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2004년도 제15회 정기총회 및 동계학술발표회
    • /
    • pp.160-163
    • /
    • 2004
  • LUTCHI와 새로이 수집된 CII-Kwak 데이터를 이용하여 테스트한 결과 CIECAM02를 비롯해 현재까지 개발된 주된 color appearance model들이 몇 가지 중요한 color appearance 현상들을 설명하지 못한다는 것이 발견되었다. 본 논문에서는 이러한 문제점을 극복하기위해 새로이 개발된 Kwak03 모델이 소개되었다. Kwak03 모델은 CIECAM02에 기초하고 있으나 achromatic signal에서 cone 신호들의 비율, dynamic response 함수 등 많은 면에서 큰 차이를 보인다. LUTCHI 및 CII-Kwak 데이터를 사용한 테스트 결과 Kwak03가 테스트된 모델들 중 특히 dark surround 하에서 휘도 및 배경색의 변화에 따른 색변화 예측에서 가장 우수한 결과를 보였다.

  • PDF

In-vitro assessment of the accuracy and reliability of mandibular dental model superimposition based on voxel-based cone-beam computed tomography registration

  • Han, Gaofeng;Li, Jing;Wang, Shuo;Liu, Yan;Wang, Xuedong;Zhou, Yanheng
    • 대한치과교정학회지
    • /
    • 제49권2호
    • /
    • pp.97-105
    • /
    • 2019
  • Objective: This study was performed to evaluate the accuracy and reliability of a newly designed method to achieve mandibular dental model superimposition, using voxel-based cone-beam computed tomography (CBCT) registration. Methods: Fourteen dry cadaveric mandibles and six teeth extracted from patients with severe periodontitis were used to establish 14 orthodontic tooth-movement models. The protocol consisted of two steps: in the first step, voxel-based CBCT mandible superimposition was performed; the reference comprised the external portion of the symphysis, extending to the first molar. The laser-scanned dental model image was then integrated with the CBCT image to achieve mandibular dental model superimposition. The entire process required approximately 10 minutes. Six landmarks were assigned to the teeth to measure tooth displacement, using tooth displacement on the superimposed laser-scanned mandibles as the reference standard. Accuracy was evaluated by comparing differences in tooth displacement based on the method and the reference standard. Two observers performed superimposition to evaluate reliability. Results: For three-dimensional tooth displacements, the differences between the method and the reference standard were not significant in the molar, premolar, or incisor groups (p > 0.05). The intraclass correlation coefficients for the inter- and intra-observer reliabilities of all measurements were > 0.92. Conclusions: Our method of mandibular dental model superimposition based on voxel registration is accurate, reliable, and can be performed within a reasonable period of time in vitro, demonstrating a potential for use in orthodontic patients.

생산전략모형의 진화: 품질의 관점 (Evolution of Manufacturing Strategy Model: A Quality Perspective)

  • Heetak Kim
    • 품질경영학회지
    • /
    • 제29권1호
    • /
    • pp.85-100
    • /
    • 2001
  • There is a significant discrepancy between manufacturing strategy and quality management. This paper attempts to review the literature of manufacturing strategy model in quality perspective The objective of the paper is to clarify the quality aspect of manufacturing strategy models for a better understanding of the subject and to lay a foundation to integrate manufacturing strategy with quality management. The paper is organized as follows. First, the literature review on the issue is presented. The trade-off model, lean production model, cumulative model, sand cone model, quality staircase model are critically reviewed. Next, the discussion on the review model is brought. Finally, conclusions are presented.

  • PDF

Finite element model updating - Case study of a rail damper

  • Kuchak, Alireza Jahan Tigh;Marinkovic, Dragan;Zehn, Manfred
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.27-35
    • /
    • 2020
  • In rail industry, noise reduction is a concern to decrease environmental pollution. The current study focuses on rail damper modeling and improvement of the model through validation with experimental results. Accurate modeling and simulation of rail dampers, specifically tuned rail dampers with layers interconnected by bolt joints, shall enable objective-oriented improvement of their design. In this work, to improve the damper model cone pressure theory is applied in the FE model and the sensitivity analysis is then applied to gradually improve the FE model. The improved model yields higher Modal Assurance Criterion (MAC) values and lower frequencies deviation.

적분모델을 이용한 난연처리된 Douglas fir의 화재특성 예측 (Predicting of Fire Characteristics of Flame Retardant Treated Douglas fir Using an Integral Model)

  • 박형주;김홍;하동명
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.98-104
    • /
    • 2005
  • This study experimentally and theoretically examines the fire characteristics of 100- by 100- by 50-mm samples of flame retardant treated Douglas fir. Samples were exposed to a range of incident heat fluxes 10 to $50kW/m^2$. The time to ignition measurements obtained from the cone heater were used to derive characteristic properties of the materials. A one-dimensional integral model has been used to predict the, time to ignition, critical heat flux and ignition temperature of samples. Ignition data and best-fit curves confirm ${{\dot{q}}_i}^{'}{\rightarrow}{{\dot{q}}_{cr}^{'}\;then\;t_{ig}{\rightarrow}{\infty}$ and when ${{\dot{q}}_i}^'{\gg}{{\dot{q}}_{cr}^'\;then\;t_{ig}{\rightarrow}0$. And Ignition of flame retardant treated samples occurred not at incident heat flux of bellow $10kW/m^2.$. By a one-dimensional integral model, the critical heat flux of each samples was predicted $10.21kW/m^2,\;11.82kW/m^2,\;and\;14.16kW/m^2$ for the D-N, D-F2, and D-F4, respectively. In ignition temperature of each samples, flame retardant treated samples were measured high about $50^{\circ}C$ than non-treated samples. Water-soluble flame retardant used in this study finds out more effect in delay of time to ignition when incident heat flux is low than high.

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.

Comparison of accuracy between free-hand and surgical guide implant placement among experienced and non-experienced dental implant practitioners: an in vitro study

  • Dler Raouf Hama;Bayad Jaza Mahmood
    • Journal of Periodontal and Implant Science
    • /
    • 제53권5호
    • /
    • pp.388-401
    • /
    • 2023
  • Purpose: This study investigated the accuracy of free-hand implant surgery performed by an experienced operator compared to static guided implant surgery performed by an inexperienced operator on an anterior maxillary dental model arch. Methods: A maxillary dental model with missing teeth (No. 11, 22, and 23) was used for this in vitro study. An intraoral scan was performed on the model, with the resulting digital impression exported as a stereolithography file. Next, a cone-beam computed tomography (CBCT) scan was performed, with the resulting image exported as a Digital Imaging and Communications in Medicine file. Both files were imported into the RealGUIDE 5.0 dental implant planning software. Active Bio implants were selected to place into the model. A single stereolithographic 3-dimensional surgical guide was printed for all cases. Ten clinicians, divided into 2 groups, placed a total of 60 implants in 20 acrylic resin maxillary models. Due to the small sample size, the Mann-Whitney test was used to analyze mean values in the 2 groups. Statistical analyses were performed using SAS version 9.4. Results: The accuracy of implant placement using a surgical guide was significantly higher than that of free-hand implantation. The mean difference between the planned and actual implant positions at the apex was 0.68 mm for the experienced group using the free-hand technique and 0.14 mm for the non-experienced group using the surgical guide technique (P=0.019). At the top of the implant, the mean difference was 1.04 mm for the experienced group using the free-hand technique and 0.52 mm for the non-experienced group using the surgical guide technique (P=0.044). Conclusions: The data from this study will provide valuable insights for future studies, since in vitro studies should be conducted extensively in advance of retrospective or prospective studies to avoid burdening patients unnecessarily.

Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils

  • Park, Tae-Woong;Kim, Hyeong-Joo;Tanvir, Mohammad Taimur;Lee, Jang-Baek;Moon, Sung-Gil
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.99-105
    • /
    • 2018
  • Soils are generally classified as fine-grained or coarse-grained depending on the percentage content of the primary constituents. In reality, soils are actually made up of mixed and composite constituents. Soils primarily classified as fine-grained, still consists of a range of coarse particles as secondary constituents in between 0% to 50%. A laboratory scale model test was conducted to investigate the influence of coarse particles on the physical (e.g., density, water content, and void ratio) and mechanical (e.g., quick undrained shear strength) properties of primarily classified fine-grained cohesive soils. Pure kaolinite clay and sand-mixed kaolinite soil (e.g., sand content: 10%, 20%, and 30%) having various water contents (60%, 65%, and 70%) were preconsolidated at different stress levels (0, 13, 17.5, 22 kPa). The quick undrained shear strength properties were determined using the conventional Static Cone Penetration Test (SCPT) method and the new Fall Cone Test (FCT) method. The corresponding void ratios and densities with respect to the quick undrained shear strength were also observed. Correlations of the physical properties and quick undrained shear strengths derived from the SCPT and FCT were also established. Comparison of results showed a significant relationship between the two methods. From the results of FCT and SCPT, there is a decreasing trend of quick undrained shear strength, strength increase ratio ($S_u/P_o$), and void ratio (e) as the sand content is increased. The quick undrained shear strength generally decreases with increased water content. For the same water content, increasing the sand content resulted to a decrease in quick undrained shear strength due to reduced adhesion, and also, resulted to an increase in density. Similarly, it is observed that the change in density is distinctively noticeable at sand content greater than 20%. However, for sand content lower than 10%, there is minimal change in density with respect to water content. In general, the results showed a decrease in quick undrained shear strength for soils with higher amounts of sand content. Therefore, as the soil adhesion is reduced, the cone penetration resistances of the FCT and SCPT reflects internal friction and density of sand in the total shear strength.