• Title/Summary/Keyword: cone axis

Search Result 94, Processing Time 0.027 seconds

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

A New Species of Leptostrobus from the Upper Triassic Amisan Formation of the Nampo Group in Korea

  • Kim, Jong-Heon;Kim, Hee-Soo;Lee, Bong-Jae;Kim, Jung-Min;Lee, Hee-Kwon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • Leptostrobus myeongamensis sp. nov. is newly described from the well-preserved but broken material occurring in the Upper Triassic Amisan Formation of the Nampo Group in Korea. This species is characterized by its lateral appendages of cone axis, each consisting of a rounded capsule and small scale leaf, and by its cone base covered with small scale leaves, the same size as in cone axis. This species is the first record from the Mesozoic strata in Korea.

Five-axis finishing tool path generation for a mesh blade based on linear morphing cone

  • Zhang, Rong;Hu, Pengcheng;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-275
    • /
    • 2015
  • Blisk is an essential component in aero engines. To maintain good aero-dynamic performance, one critical machining requirement for blades on blisk is that the generated five-axis tool path should be boundary-conformed. For a blade discretely modeled as a point cloud or mesh, most existing popular tool path generation methods are unable to meet this requirement. To address this issue, a novel five-axis tool path generation method for a discretized blade on blisk is presented in this paper. An idea called Linear Morphing Cone (LMC) is first proposed, which sets the boundary of the blade as the constraint. Based on this LMC, a CC curve generation and expansion method is then proposed with the specified machining accuracy upheld. Using the proposed tool path generation method, experiments on discretized blades are carried out, whose results show that the generated tool paths are both uniform and boundary-conformed.

Comparison of Cone Model Parameters for Halo Coronal Mass Ejections

  • Na, Hyeon-Ock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observations, we consider two CME cone models: an ice-cream cone model and an asymmetric cone model. These models allow us to determine three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and cone axis. In this study, we compare these parameters obtained from both models using 50 well-observed HCMEs from 2001 to 2002. Then we obtain the root mean square error (RMS error) between measured projection speeds and estimated ones for the models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R=0.89), and the correlation coefficient of angular width is 0.68. The correlation coefficient of the angle between sky plane and cone axis is 0.42, which is much smaller than what is expected. The reason may be due to the fact that the source locations of the asymmetric cone model are assumed to be near the center. The average RMS error of the asymmetric cone model (86.2km/s) is slightly smaller than that of the ice-cream cone model (88.6km/s).

  • PDF

Accuracy and reproducibility of landmark of cone beam computed tomography (CT) synthesized cephalograms (Cone beam computed tomography로 합성된 두부규격 방사선사진에서의 각 계측점의 정확도와 재현성에 관한 연구)

  • Kwon, Dae-Keun;Min, Seung-Ki;Jun, In-Chul;Paeng, Jun-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.2
    • /
    • pp.78-86
    • /
    • 2010
  • Introduction: Cone beam computed tomography (CBCT) has various advantages and is used favorably in many fields in dentistry. Especially, CBCT is being used as basic diagnostic tool for 3-dimensional analysis in orthognathic patient. Two-dimensional cephalograms can be synthesized from CBCT digital imaging and communications in medicine (DICOM) data. In this study, conventional cephalograms and CBCT were taken simultaneously, and representative landmarks were located and analyzed in its accuracy and reproducibility. Materials and Methods: Ten patients who had orthognathic surgery in Wonkwang University Daejeon Dental Hospital participated in this study. For each patient, CBCT and conventional cephalogram was taken. By using Ondemand (Cybermad, Korea), 2-dimensional cephalograms was established on CBCT. In addition, 19 landmarks were designated and measured by 3 orthodontists twice a week. After these landmarks were transferred to a coordinate, distance of landmark and axis, standard error, distribution degree were measured, compared and analyzed. Results: Comparing the CT ceph group and conventional cephalogram group, CT ceph group had shown shorter distance of landmark and axis in S, Hinge axis, Bpt, Ba, Or, Corpus left. Standard error of the mean shows that CT ceph group has better reproducibility in Or, Corpus left, Hinge axis at X axis and Na, U1R, U1T, Bpt, PNS, Ba Corpus left, Hinge axis at Y axis. In both groups, mean error was less than 1.00 mm, no significant difference were found between CT ceph group and conventional cephalogram group in all measurements. Furthermore, comparing two groups, each 17 landmarks out of 19 had its characteristic in distribution degree. Conclusion: No significant difference were found between CBCT composed cephalographic radiograph and conventional cephalograghic radiograph, clinical application may be possible if improved.

Birefringence measurements of lmol%Mg:LiNbO3 with Noncollinea­rphase­matching cone

  • Lee, Jong-Soo;Rhee, Bum-Ku;Joo, Gi-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.54-57
    • /
    • 1998
  • A noncollinear-phase-matching cone of second harmonic generation(SHG) was observed in a LiNbO3 crystal doped with l mol% MgO. Birefringence refractive indices can be accurately evaluated by analysing the temperature phase matching characteristic for SHG combined with the measurement of the half cone angle. The electro-optic coefficient can also be determined form the observed change of the half cone angle when a DC electric field is applied along the optic axis.

Ellipse-Stacking Methods for Image Reconstruction in Compton Cameras (컴프턴 카메라 영상재구성을 위한 타원 누적법)

  • Lee, Mi-No;Lee, Soo-Jin;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.520-529
    • /
    • 2007
  • An efficient method for implementing image reconstruction algorithms for Compton cameras is presented. Since Compton scattering formula establishes a cone surface from which the incident photon must have originated, it is crucial to implement a computationally efficient cone-surface integration method for image reconstruction. In this paper we assume that a cone is made up of a series of ellipses (or circles) stacked up one on top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we propose a new method using a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the cone surface integral can be performed by simply accumulating the circles along the cone axis. To reduce the computational cost of tracing circles, only one of the circles in the cone is traced and the rest are determined by using simple trigonometric ratios. For our experiments, we used the three different schemes for tracing ellipses; (i) using the samples generated by the ellipse equation, (ii) using the fixed number of samples along a circle on the imaginary plane, and (iii) using the fixed sampling interval along a circle on the imaginary plane. We then compared performance of the above three methods by applying them to the two reconstruction algorithms - the simple back-projection method and the expectation-maximization algorithm. The experimental results demonstrate that our proposed methods (ii) and (iii) using imaginary planes significantly improve reconstruction accuracy as well as computational efficiency.

A Study of Attitude Determination Techniques for Satellite (위성체의 자세결정기법에 관한 연구)

  • Cho, K.R.;Suh, D.H.
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 1998
  • The cone intercept method (CIM) is generally used for attitude determination of a spin-stabilized satellite. The method is popularly used on a transfer orbit, but it is well known that it can also be used for the geosychronous orbit. In this paper, the CIM is applied to the geosynchronous orbit and its performance and limitations will be investigated from the results. The CIM impliments two sensors (Sun and Earth sensors). The Sun sensor finds the angle between the spin-axis and the direction vector to the Sun and the Earth sensor does the angle between the spin-axis and the direction vector to the Earth. By using these two cone angles, the CIM gives the direction of the spin-axis of the satellite.

  • PDF

Influence of the anterior arch shape and root position on root angulation in the maxillary esthetic area

  • Petaibunlue, Suweera;Serichetaphongse, Pravej;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Purpose: This study was conducted to characterize the relationship of the angulation between the tooth root axis and alveolar bone axis with anterior alveolar(AA) arch forms and sagittal root position (SRP) in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: CBCT images that met the inclusion and exclusion criteria were categorized using a recent classification of AA arch forms and a SRP classification. Then, the angulation of the root axis and the alveolar bone axis was measured using mid-sagittal CBCT images of each tooth. The relationships of the angulation with each AA arch form and SRP classification were evaluated using 1-way analysis of variance and a linear regression model. Results: Ninety-eight CBCT images were included in this study. SRP had a greater influence than the AA arch form on the angulation of the root axis and the alveolar bone axis(P<0.05). However, the combination of AA arch form and SRP was more predictive of the angulation of the root axis and the alveolar bone axis than either parameter individually. Conclusion: The angulation of the root axis and alveolar bone axis demonstrated a relationship with the AA arch form and SRP in teeth in the anterior esthetic region. The influence of SRP was greater, but the combination of both parameters was more predictive of root-to-bone angulation than either parameter individually, implying that clinicians should account for both the AA arch form and SRP when planning implant placement procedures in this region.

Comparison of 3-D structures of Halo CMEs using cone models

  • Na, Hyeon-Ock;Moon, Y.J.;Jang, Soo-Jeong;Lee, Kyoung-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.95.1-95.1
    • /
    • 2012
  • Halo coronal mass ejections (HCMEs) are major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (${\gamma}$) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are less than 0.53 and those between ${\gamma}$ values are less than 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. Finally, we discuss their strengths and weaknesses in terms of space weather application.

  • PDF