• 제목/요약/키워드: conductive inorganic filler

검색결과 9건 처리시간 0.025초

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과 (Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties)

  • 장은수;이한성;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

Preparation of Solventless UV Curable Thermally Conductive Pressure Sensitive Adhesives and Their Adhesion Performance

  • Baek, Seung-Suk;Park, Jinhwan;Jang, Su-Hee;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • 제52권2호
    • /
    • pp.136-142
    • /
    • 2017
  • Using various compositions of thermally conductive inorganic fillers with boron nitride (BN) and aluminum oxide ($Al_2O_3$), solventless UV-curable thermally conductive acrylic pressure sensitive adhesives (PSAs) were prepared. The base of the PSAs consists of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and isobornyl acrylate.The compositions of the thermally conductive inorganic fillers were 10, 15, 20, and 25 phr in case of BN, and 20:0, 15:5, 10:10, 5:15, and 0:20 phr in case of $BN/Al_2O_3$. The adhesion properties like peel strength, shear strength, and probe tack, and the thermal conductivity of the prepared PSAs were investigated with different thermally conductive inorganic filler contents. There were no significant changes in photo-polymerization behavior with increasing BN or $BN/Al_2O_3$ content. Meanwhile, the conversion rate and transmittance of the PSAs decreased and their thermal stabilities increased with increasing BN content. Their adhesion properties were also independent of the BN or $BN/Al_2O_3$ content. The dispersibility of BN in the acrylic PSAs was better than that of $Al_2O_3$ and it ranked the thermal conductivity in the following order: BN > $BN/Al_2O_3$ > $Al_2O_3$.

멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향 (Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding)

  • 정다훈;임다은;이소정;고용호;김준기
    • 마이크로전자및패키징학회지
    • /
    • 제24권2호
    • /
    • pp.11-15
    • /
    • 2017
  • 실리콘 칩을 적층하는 3D 멀티 플립칩 패키지의 경우 방열문제가 대두됨에 따라 접착 접합부의 열전도도 향상이 요구되고 있다. 본 연구에서는 플립칩 본딩용 비전도성 접착제(NCP)에 있어서 알루미나 필러의 첨가가 NCP의 물성 및 열전도도에 미치는 영향을 조사하였다. 알루미나 필러는 미세피치 플립칩 접속을 위해 평균입도 400 nm의 미세분말을 사용하였다. 알루미나 필러 함량이 0~60 wt%까지 증가함에 따라 60 wt% 첨가 시 0.654 W/mK에 도달하였다. 이는 동일 첨가량 실리카의 0.501 W/mK보다는 높은 열전도도이지만, 동일 함량의 조대한 알루미나 분말을 첨가한 경우에 비해서는 낮은 열전도도로, 미세 플립칩 본딩을 위해 입도가 미세한 분말을 첨가하는 것은 열전도도에 있어서는 불리한 효과로 작용함을 알 수 있었다. NCP의 점도는 40 wt% 이상에서 급격히 증가하는 현상을 나타내었는데, 이는 미세 입도에 따른 필러 간 상호작용의 증가에 기인하는 것으로, 미세피치 플립칩 본딩을 위해 열전도도가 우수한 미세 알루미나 분말을 사용하기 위해서는 낮은 점도를 유지하면서 필러 첨가량을 증가시킬 수 있는 분산방안이 필요한 것으로 판단되었다.

Study on the Properties of UV Curing Thermal Conductive and Pressure Sensitive Adhesive Using Inorganic Fillers

  • Oh, Ji-Hwan;Choi, Jin-Yeong;Kim, Su-Hwan;Jang, Se-Hoon;Shin, Yoo-Jin;Kim, Dae-Hyun;Yoo, Hwan-Kyu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.22-26
    • /
    • 2017
  • The thermal conductivity and the adhesive properties were measured, after synthesis of thermal conductive composite which was obtained as a result of mixing alumina or graphite with acrylic adhesive synthesized by UV polymerization. The adhesive properties of the composite were evaluated measuring the peel strength at 180 degrees, the retention, and the initial tack;the thermal conductivity was estimated using laser flash analysis. As the filler contents increased, a decrease in peel strength and initial tack and an increase in retention and thermal conductivity were observed. When compared to alumina, the adhesion of graphite showed a dramatic decrease, whereas the thermal conductivity was further enhanced. It was found out that the small size of graphite increased the mechanical interlocking between the polymer and the filler, and it was easier for graphite to come into contact with other graphite in the matrix.

Application of Nano Coating to ACSR conductor for the Protection of Transmission lines against Solar Storms, Surface Flashovers, Corona and Over voltages

  • Selvaraj, D. Edison;Mohanadasse, K.;Sugumaran, C. Pugazhendhi;Vijayaraj, R.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2070-2076
    • /
    • 2015
  • Nano composite materials were multi-constituent combinations of nano dimensional phases with distinct differences in structure, chemistry and properties. Nano particles were less likely to create large stress concentrations and thereby can avoid the compromise of the material ductility while improve other mechanical properties. Corona discharge was an electrical discharge. The ionization of a fluid surrounding a conductor was electrically energized. This discharge would occur when the strength of the electric field around the conductor was high enough to form a conductive region, but not high enough to cause electrical breakdown or arcing to nearby objects. This paper shows all the studies done on the preparation of nano fillers. Special attention has given to the ACSR transmission line conductor, TiO2 nano fillers and also to the evaluation of corona resistance on dielectric materials discussed in detail. The measurement of the dielectric properties of the nano fillers and the parameters influencing them were also discussed in the paper. Corona discharge test reveals that in 0%N ACSR sample corona loss was directly proportional to the applied line voltage. No significant change in corona loss between 0%N and 1%N. When TiO2 nano filler concentration was increased up to 10%N fine decrement in corona loss was found when compared to base ACSR conductor, corona loss was decreased by 40.67% in 10%N ACSR sample. It was also found from the surface conditions test that inorganic TiO2 nano filler increases the key parameters like tensile strength and erosion depth.

감도 최소화 기법을 이용한 다변수 플랜트의 강인한 제어기 설계 (Robust Controller Design of Multivariable Plant using Sensitivity Minimization)

  • 이원규;김영달
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제7권6호
    • /
    • pp.42-50
    • /
    • 1993
  • 본 논문에서는 플랜트 모델에 불확실성이 존재하는 경우에도 강인 안정도를 보장하는 제어기 설계 문제를 연구하였다. 먼저 강인 안정도 및 감도 특성을 특이치 한계를 이용하여 기술하고 이들 설계 조건을 만족하는 제어기 설계 기법을 Diophantine 방정식과 감도 평가 함수의 최소화에 의해 제시하였다. Diophantine 방정식의 해를 구하기 위해 칼만 필터의 설계와 필터의 주파수 역 특성을 조사하였고, 원하는 특이치 형성을 통해 저감도 특성을 만족하는 특성 다항식 행렬을 구하였다. 그리고 제어기에 설계 자유도를 주어 감도 평가 함수를 최소화하는 제어기 매개 변수 계산 방법을 Routh 배열을 이용하여 제시하였다.제안된 강인한 제어기 설계 기법을 모델에 적용하여 검토해 본 결과 만족스러운 결과를 얻을 수 있었다.

  • PDF

전기설비용 Epoxy 복합재료의 유전특성 (The Dielectric Characteristics Epoxy Composite Material for Electric Installation)

  • 이보호;박동화;이병기
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제7권2호
    • /
    • pp.51-56
    • /
    • 1993
  • Epoxy 복합재료의 충전제 및 수분함유의 유전특성에 대한 영향을 고찰한 결과를 요약하면 다음과 같다. 1) ${\varepsilon}_\tau$의 주파수 의존성은 시편1과 시편2의 경우에서 $140^{\circ}C$이하에서 직선적인 특성을 나타내고 있으며 수분의 함유시에도 직선적인 변화를 하고 있으므로 주파수나 습도 센서소자로서 개발이 가능하다. 2) 100[Hz]~3[kHz]의 범위에서 $tan{\delta}$ 주파수 의존성은 캐리어 이동에 의한 도전손실 보다 쌍극자완화에 의한 손실이 지배적이며 수분에 영향은 낮은 주파수에서 크게 받는다.

  • PDF

ATH 첨가에 의한 실리콘 고무의 염무/열 반복열화 특성 변화 (The Change of the Cyclic Aging Characteristics under Salt-fog/Heating on Silicone Rubber by ATH Additions)

  • 이청;김기엽;김규백;류부형
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.58-63
    • /
    • 2005
  • In this research, silicone rubber with additions of inorganic filler, alumina trihydrate$(Al(OH)_3\;:\;ATH)$, was aged acceleratedly and cyclically by the salt-fog and heating. The optimum amount of ATH addition to silicone rubber have been investigated by measurements of leakage current in the change of electrical properties and tensile strength, %elongation in mechanical properties and FT-IR, TG, SEM in the change of the chemical properties. With regard to un-aged silicone rubber, as the ATH addition amount increases, conductive path formation time was shortened in the electrical properties and tensile strength was increased, %elongation was decreased. In case of identical ATH addition amount, as cyclic aging increases, surface resistivity, tensile strength and %elongation were decreased. Considering the cyclic aging, the most effective amount of ATH addition was about 90phr.