• Title/Summary/Keyword: conduction model

Search Result 525, Processing Time 0.025 seconds

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Simulation of flame propagation in suspension of coal particles (석탄입자가 존재하는 공기중에서의 화염전파에 관한 모사)

  • 윤길원;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 1988
  • A two phase model for the simulation of flame propagation has been developed and applied to a mixture of coal air. The effects associated with changes in the initial coal partial equivalence ratio and the initial diameter of particles on the structure of laminar flame propagation have been studied qualitatively and quantitatively. Especially the flame structure, the burning velocity, and the thermal behavior were evaluated. It was found that the radiative heat transfer absolutely dominates over the conduction mode. The increase in particle size was seen to contribute to an obvious increase in burning velocity for fuel lean and stoichiometric mixture. But for fuel rich mixture, the burning velocity was found to exhibit a weaker dependence on particle size.

Defect Structure and Electrical Conductivities of $SrCe_{0.95}Yb_{0.05}O_3$ ($SrCe_{0.95}Yb_{0.05}O_3$의 결함엄개와 전기전도 특성)

  • 최정식;이도권;유한일
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.271-279
    • /
    • 2000
  • 5 m/o Yb-doped SrCeO3 proton conductor was prepared by a solid state reaction method and its total electriccal conductivity measured as a function of both oxygen partial pressure and water vapor partial pressure in the temperature range of 500~100$0^{\circ}C$. From the total conductivity have been deconvoluted the partial conductivities of oxide ions, protons, and holes, respectively, on the basis of the defect model proposed. The equilibrium constant of hydrogen-dissolution reaction, proton concentration, and mobilities of oxygen vacancies and protons have subsequently been evaluated. It is verified that SrCe1-xYbxO3 is a mixed conductor of holes, protons and oxide ions and the proton conduction prevails as temperature decreases and water vapor pressure increases. The heat of water dissolution takes a representative value of $\Delta$HoH=-(140$\pm$20) kJ/mol-H2O, but tends to be less negative with increasing temperature. Migration enthalpies of proton and oxygen vacancy are extracted as 0.83$\pm$0.10 eV and 0.81$\pm$0.01 eV, respectively.

  • PDF

A Study on the Estimation of Motor Unit Information using Surface EMG (표면 근전도를 이용한 운동단위의 정보추정에 관한 연구)

  • Kim, Sung-Hwan;Lee, Ho-Yong;Son, Dong-Il;Jung, Chul-Ki;Ko, Do-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2040-2050
    • /
    • 2007
  • In this study, we present a novel method for estimating the information of MU(motor unit) which is the basic element of human muscle by using surface EMG. Some of the method developed in this field could only estimate the numbers of MU that is activated. However, in our study the MU-simulator based on the line source model was designed to estimate the MU information including the numbers of MU and muscle fiber, conduction velocity, MU diameter, fiber diameter, and end plate position. The SMUAP(single motor unit action potential) detector was designed and CMAP(compound muscle action potential) by electrical stimulus was recorded. With these data, the MU-simulator can estimate the MU information by varying muscle paramater settings through MSE(mean square error) method. Our results shows that the proposed method can be comparable with the method of anatomical studies. Moreover, our system can be utilized to build a tool for diagnosis and treatment assessment of neuromuscular patients.

Digital Implementation of PWM Techniques for Two-phase Eight-switch Inverter fed Brushless DC Motor Drives

  • Lin, Hai;You, Yong-Min;Cheon, Sung-Rock;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.295-303
    • /
    • 2013
  • This paper reports an investigation of pulse width modulation (PWM) techniques for two-phase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electrical-degree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

Short-Circuit Currents arising at a $M_1-P-M_2$ Contacts ($M_1-P-M_2$형 접촉으로 인하여 생기는 단락전류)

  • D C. Lee
    • 전기의세계
    • /
    • v.25 no.1
    • /
    • pp.95-100
    • /
    • 1976
  • The main purpose of this paper is to study on the transient current due to the change of environmental temperature under no external field in the arrangement of M$_{1}$(metal)-P(polyver)-M$_{2}$(metal). The specimer of polymeric insulator sandwiched by two metal electrodes composes a parallel-plate condenser represented by Maxwell-model. The behaviors of short circuit current flowing in M-P-M arrangement are very complex and the analysis of its conduction mechanism appears to be much complicated. In this paper we can suggest that a contact potential difference as an energetic state exists in the thin film specimen both sides of which are contacted by two different metals having different cook functions. Futhermore the contact potential difference appears to be constant through the course of temperature change, however, the dielectric constant and caparitance of the specimen must be temperature dependent. Accordingly the charge difference induced on both sides of electrodes may be a cause for the shory circuited transient current flowing through the external circuit. It is also suggestive that the results of the observation must be considered in cases of insulation design of electrical machines and D.C. cable for high voltage use.

  • PDF

Influencing factors on electrical conductivity of compacted kaolin clay

  • Lee, J.K.;Shang, J.Q.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.131-151
    • /
    • 2011
  • The electrical conductivity of a soil-water system is related to its engineering properties. By measuring the soil electrical conductivity, one may obtain quantitative, semi-quantitative, or qualitative information to estimate the in-situ soil behavior for site characterization. This paper presents the results of electrical conductivity measured on compacted kaolin clay samples using a circular two-electrode cell in conjunction with a specially designed compaction apparatus, which has the advantage of reducing errors due to sample handling and increasing measurement accuracy. The experimental results are analyzed to observe the effects of various parameters on soil electrical conductivity, i.e. porosity, unit weight, water content and pore water salinity. The performance of existing analytical models for predicting the electrical conductivity of saturated and unsaturated soils is evaluated by calculating empirical constants in these models. It is found that the Rhoades model gives the best fit for the kaolin clay investigated. Two general relationships between the formation factor and soil porosity are established based on the experimental data reported in the literature and measured from this study for saturated soils, which may provide insight for understanding electrical conduction characteristics of soils over a wide range of porosity.

Micro-macroscopic analysis on the directional casting of a metal alloy (합금의 방향성 주조에 대한 미시적-거시적 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

Calibration Study on the DC Characteristics of GaAs-based $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ Heterostructure Metamorphic HEMTs (GaAs 기반 $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ 이종접합 구조를 갖는 MHEMT 소자의 DC 특성에 대한 calibration 연구)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.63-73
    • /
    • 2011
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with conventional pseudomorphic HEMTs (PHEMTs). For the optimized device design and development, we have performed the calibration on the DC characteristics of our fabricated 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}$As heterostructure on the GaAs wafer using the hydrodynamic transport model of a commercial 2D ISE-DESSIS device simulator. The well-calibrated device simulation shows very good agreement with the DC characteristic of the 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.