• Title/Summary/Keyword: conduction model

Search Result 525, Processing Time 0.024 seconds

SMOLDERING IGNITION OF FLAMMABLE SUBSTRATE

  • Yi, Sung-Chul;Kim, Hee-Taik;Ryu, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.162-168
    • /
    • 1997
  • A theoretical model for the interaction of the moving heat source and a solid substrate when they are in contact is described. for purposes of the model the substrate is assumed to act as a continuum and the Fourier equation for transient. three-dimensional conduction is solved using Laplace and Fourier transformations. Unlike most previous models, this model shows the explicit relations between the properties of heat source and that of the substrate. Since the size, shape and speed of heat source impact the ignition of substrate, considerable attention is devoted to evaluating these parameters. Results are presented which show the effects of the size, shape and speed of heat source on the substrate.

  • PDF

Improved Transfer Functions for Modified Sheppard-Taylor Converter that Operates in CCM: Modeling and Application

  • Wang, Faqiang
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.884-891
    • /
    • 2017
  • The improved transfer functions of the modified Sheppard-Taylor (MS-T) converter, which is capable of regulating output voltage under a wide range of input voltage and load variations, negligible current ripple, and fewer components in comparison to the Sheppard-Taylor (S-T) converter, operating in continuous conduction mode (CCM) are investigated in this study. Its DC equilibrium point, small signal model, and transfer functions are derived and analyzed. Then, the voltage controller is applied for this MS-T converter. The comparisons between the derived model and the existing model are presented. The hardware circuit is designed and the circuit experiments are provided for validation. The results show that the improved transfer functions of the MS-T converter are more effective and general than the previous ones for describing its real characteristics.

Fundamental and plane wave solution in non-local bio-thermoelasticity diffusion theory

  • Kumar, Rajneesh;Ghangas, Suniti;Vashishth, Anil K.
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.21-38
    • /
    • 2021
  • This work is an attempt to design a dynamic model for a non local bio-thermoelastic medium with diffusion. The system of governing equations are formulated in terms of displacement vector field, chemical potential and the tissue temperature in the context of non local dual phase lag (NL DPL) theories of heat conduction and mass diffusion. Based on this considered model, we study the fundamental solution and propagation of plane harmonic waves in tissues. In order to analyze the behavior of the NL DPL model, we construct basic theorem in the terms of elementary function which determine the existence of three longitudinal and one transverse wave. The effects of various parameters on the characteristics of waves i.e., phase velocity and attenuation coefficients are elaborated by plotting various figures of physical quantities in the later part of the paper.

Effective thermal conductivity model of porous polycrystalline UO2: A computational approach

  • Yoon, Bohyun;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1541-1548
    • /
    • 2022
  • The thermal conductivity of uranium oxide (UO2) containing pores and grain boundaries is investigated using continuum-level simulations based on the finite-difference method in two and three dimensions. Steady-state heat conduction is solved on microstructures generated from the phase-field model of the porous polycrystal to calculate the effective thermal conductivity of the domain. The effects of porosity, pore size, and grain size on the effective thermal conductivity of UO2 are quantified. Using simulation results, a new empirical model is developed to predict the effective thermal conductivity of porous polycrystalline UO2 fuel as a function of porosity and grain size.

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

Development of Average Inverter Model for Analysis of Automotive Electric Drive System (자동차용 전동시스템 해석을 위한 평균값 인버터 모델 개발)

  • Choi, Chin-Chul;Bae, Kyu-Tae;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.23-30
    • /
    • 2010
  • A detailed circuit level model requires a small sampling time to represent high frequency switching behaviors with proper resolution. The small sampling time leads a large execution time to obtain the system analysis results. As the alternative of the detailed circuit model, an averaged PWM switch model was proposed for the rapid system level analysis. There exists a voltage distortion between the reference and output voltage because of non-ideal switching characteristics, such as the dead-time, diode forward voltage drop and conduction resistance. This paper analyzed causes and effects of the voltage distortion. The average inverter model, which reflecting this voltage distortion, is developed for the rapid and accurate analysis of automotive electric drive system in MATLAB/Simulink environment. The rapidity and accuracy of the proposed inverter model is proved through comparison between simulation and experiment.

Analytical Model for Metal Insulator Semiconductor High Electron Mobility Transistor (MISHEMT) for its High Frequency and High Power Applications

  • Gupta, Ritesh;Aggarwal, Sandeep Kr;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.189-198
    • /
    • 2006
  • A new analytical model has been proposed for predicting the sheet carrier density of Metal insulator Semiconductor High Electron Mobility Transistor (MISHEMT). The model takes into account the non-linear relationship between sheet carrier density and quasi Fermi energy level to consider the quantum effects and to validate it from subthreshold region to high conduction region. Then model has been formulated in such a way that it is applicable to MESFET/HEMT/MISFET with few adjustable parameters. The model can also be used to evaluate the characteristics for different gate insulator geometries like T-gate etc. The model has been extended to forecast the drain current, conductance and high frequency performance. The results so obtained from the analysis show excellent agreement with previous models and simulated results that proves the validity of our model.

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

Analysis of Frequency Response Curve for Conduction-Cooled Power Capacitors (전도 냉각 파워 커패시터의 주파수 응답 곡선 분석)

  • An, Gyeong Moon;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.123-130
    • /
    • 2016
  • High-frequency induction heating equipment can heat the metal by applying a High-Frequency power to the resonant circuit. The resonance circuit is composed of the work coil and the conduction-cooled power capacitor, it influences the performance of the heat treatment equipment according to the characteristics of the capacitor. However, dependence on conduction-cooled power capacitor's import is high due to lack of core technology research and development. Minimizing the generation of internal heat transmitted inside during LC resonance, reduce the reactive power loss, there is a need for a capacitor within the voltage characteristic outstanding. To implement localization it is vital that prior study of the analysis on the frequency response characteristic for the finished capacitor advanced manufacturer be implemented. Studying the interpolation method to read the value at any point of the characteristic curve for a given log-log scale was applied to the analysis tool of the capacitor by my proposed algorithm. The simulation for reproducing frequency response curves was attempted by assuming a capacitor in a simplified series equivalent RC circuit to obtain the equivalent series resistance value. It was confirmed that the reproduction rate was the result value above 83% as compared to the simulation of the properties and characteristics on the actual reactive power for Peak value, and that the algorithm can be applicable when analyzing and predicting the characteristic curves of a simpled model capacitor.