• 제목/요약/키워드: conducting polymer-carbon nanocomposite

검색결과 6건 처리시간 0.02초

Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance

  • Choi, Moon-Jung;Lim, Byung-Kwon;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.200-203
    • /
    • 2008
  • A conducting polymer layer was introduced into the pore surface of mesoporous carbon via vapor infiltration of a monomer and subsequent chemical oxidative polymerization. The polypyrrole, conducting polymer has attracted considerable attention due to the high electrical conductivity and stability under ambient conditions. The mesoporous carbon-polypyrrole nanocomposite exhibited the retained porous structure, such as mesoporous carbon with a three-dimensionally connected pore system after intercalation of the polypyrrole layer. In addition, the controllable addition of pyrrole monomer can provide the mesoporous carbon-polypyrrole nanocomposites with a tunable amount of polypyrrole and texture property. The polypyrrole layer improved the electrode performance in the electrochemical double layer capacitor. This improved electrochemical performance was attributed to the high surface area, open pore system with three-dimensionally interconnected mesopores, and reversible redox behavior of the conducting polypyrrole. Furthermore, the correlation between the amount of polypyrrole and capacitance was investigated to check the effect of the polypyrrole layer on the electrochemical performance.

Current Research on Conducting Polymer-Carbon Nanocomposites for Bioengineering Applications

  • Lee, Seunghyeon;Lee, Sang Kyu;Jang, Daseul;Shim, Bong Sup
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.69-80
    • /
    • 2017
  • Conducting polymers and carbon nanomaterials offer a wide range of applications because of their unique soft conducting properties. Specifically, these conducting polymer-carbon nanocomposites have recently been utilized in bioengineering applications, partly because of their improved biocompatibility compared to conventional conducting materials such as metals and ceramics. Based on the assumption that these composites offer an important application potential as functional materials for biomedical devices or even as biomaterials, this review surveys the recent research trends on conducting polymers-carbon nanocomposites, focusing on bioengineering applications such as polyaniline (PANI), poly(3,4-ethylenedioxythiophene) or PEDOT, polypyrrole (Ppy), and carbon nanotubes and graphene.

탄소나노튜브 강화 나노복합재료의 연구현황 (Research Status on the Carbon Nanotube Reinforced Nanocomposite)

  • 차승일;김경태;이경호;모찬빈;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.25-28
    • /
    • 2003
  • Carbon nanotubes(CNTs), since their first discovery, have been considered as new promising materials in various fields of applications including field emission displays, memory devices, electrodes, NEMS constituents, hydrogen storages and reinforcements in composites due to their extra-ordinary properties. The carbon nanotube reinforced nanocomposites have attracted attention owing to their outstanding mechanical and electrical properties and are expected to overcome the limit of conventional materials. Various application areas are possible for carbon nanotube reinforced nanocomposites through the functionalization of carbon nanotubes. Carbon nanotube reinforced polymer matrix nanocomposites have been fabricated by liquid phase process including surface functionalization and dispersion of CNTs within organic solvent. In case of carbon nanotube reinforced polymer matrix nanocomposites, the mechanical strength and electrical conducting can be improved by more than an order of magnitude. The carbon nanotube reinforced polymer matrix nanocomposites can be applied to high strength polymers, conductive polymers, optical limiters and EMI materials. In spite of successful development of carbon nanotube reinforced polymer matrix nanocomposites, the researches on carbon nanotube reinforced inorganic matrix nanocomposites show limitations due to a difficulty in homogeneous distribution of carbon nanotubes within inorganic matrix. Therefore, the enhancement of carbon nanotube reinforced inorganic nanocomposites is under investigation to maximize the excellent properties of carbon nanotubes. To overcome the current limitations, novel processes, including intensive milling process, sol-gel process, in-situ process and spark plasma sintering of nanocomposite powders are being investigated. In this presentation, current research status on carbon nanotube reinforced nanocomposites with various matrices are reviewed.

  • PDF

Electrosynthesis and Electrochemical Properties of Metal Oxide Nano Wire/ P-type Conductive Polymer Composite Film

  • Siadat, S.O. Ranaei
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권3호
    • /
    • pp.81-87
    • /
    • 2015
  • This study introduces a facile strategy to prepare metal oxide/conducting polymer nanocomposites that may have promising applications in energy storage devices. Ploy aniline/nano wire manganese dioxide (PANI/NwMnO2) was synthesized by cyclic voltammetry on glassy carbon electrode. Morphology and structure of the composite, pure PANI, MnO2 nanowires were fully characterized using XRD and SEM analysis. Electrochemical studies shows excellent synergistic effect between PANI and MnO2 nanowires which results in its capacitance increase and cycle stability against PANI electrode. Specific capacitances of PANI/NwMnO2 and PANI were 456 and 190 F/g respectively. The electrochemical performance of electrodes studied using cyclic voltammetry, Galvanostatic charge/discharge and impedance spectroscopy.

산화 그래핀과 나노 흑연이 폴리스티렌 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향 (Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites)

  • 염효열;나효열;이성재
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.502-509
    • /
    • 2014
  • 탄소기반 판상형 나노재료인 산화 그래핀(GO)과 나노 흑연(GNP)은 고분자재료에 전기 전도성을 부여하기 위한 복합재료용 나노필러로 사용되고 있다. 본 연구에서는 폴리스티렌(PS)에 나노필러를 첨가한 PS/GO와 PS/GNP 나노복합재료를 라텍스 기법으로 제조한 다음 유변학적, 전기적 물성을 비교 고찰하였다. PS 입자는 무유화제 유화중합으로 중합하였으며, GO는 흑연으로부터 modified Hummers 방법으로 합성하였다. 친수성인 GO는 첨가제 없이 PS 수성 현탁액에 분산하였으며, GNP는 분산성을 높이기 위해 계면활성제를 첨가하여 분산하였다. 나노필러에 따른 유변물성은 GO가 GNP에 비해 높게 나타났는데, GO는 단일층으로 분산이 가능한 반면, GNP는 다수의 층이 겹쳐진 형태이므로 나노 규모의 균질한 분산을 이루지 못하기 때문이다. 전도성 통로가 형성되는 지점인 전기적 임계점은 PS/GO, PS/GNP 나노복합재료에 대하여 각각 0.50, 5.82 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형 시 열처리에 의해 GO가 환원되기 때문이다.

폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 물리적 분산 방법에 따른 물성 (Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites)

  • 강명환;염효열;나효열;이성재
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.526-532
    • /
    • 2013
  • 라텍스 기법으로 제조한 폴리스티렌(PS)/탄소나노튜브(CNT) 나노복합재료의 CNT 분산 방법에 따른 유변물성과 전기 전도도를 비교하였다. PS/CNT 나노복합재료는 PS 입자와 CNT를 분산시킨 후 동결건조하여 제조하였다. 본 연구에서는 화학적 개질시 나타나는 CNT의 고유 물성 저하를 방지하기 위하여 sodium dodecylsulfate(SDS)를 첨가하는 방법과 polyvinyl pyrrolidone(PVP)으로 CNT를 감싸는 방법의 물리적 분산법을 적용하였다. 라텍스 기법에 적용한 물리적 분산 방법은 CNT의 분산에 매우 효과적이었다. SDS를 첨가한 경우는 PVP로 감싼 CNT를 사용하여 제조한 경우에 비해 나노복합재료의 유변물성의 증가폭이 낮은데 이는 저분자량인 SDS를 첨가로 인해 매트릭스의 물성이 감소하기 때문이다. CNT를 SDS로 분산시킨 나노복합재료와 PVP로 감싼 CNT를 사용한 나노복합재료의 전기적 임계점은 각각 0.23과 0.90 wt%로 나타났다. PVP로 CNT를 감싼 경우가 전기 전도도 향상 효과가 낮은데 이는 감싸고 있는 절연성의 PVP가 CNT간의 전기적 연결을 억제하기 때문이다.