• Title/Summary/Keyword: conducting fabric

Search Result 20, Processing Time 0.027 seconds

Implementation of the Wearable Sensor Glove Using EDA Sensor and Conducting Fabric

  • Lee, Young-Bum;Lee, Byung-Woo;Choo, Young-Min;Kim, Jin-Kwon;Jung, Wan-Jin;Kang, Dae-Hoon;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • The wearable sensor glove was developed using EDA sensors and conducting fabric. EDA(Electro-dermal Activity) signal is an electric response of human skin. There are SIL(Skin Impedance Level) and SIR(Skin Impedance Response) in EDA. SIL consists mostly of a DC component while SIR consists of an AC component. The relationship between drowsiness and the EDA signal is utilized. EDA sensors were made using a conducting fabric instead of AgCl electrodes, for a more suitable, more wearable device. The EDA signal acquisition module was made by connecting the EDA sensor gloves through conductive fabric lines. Also, the EDA signal acquisition module can be connected to a PC that shows the results of the EDA signal processing analysis and gives proper feedback to the user. This system can be used in various applications to detect drowsiness and prevent accidents from drowsiness for automobile drivers.

A Study on Physical Properties of $PAN-CuSO_4$ Electroconductive Fiber and Wool Blended Fabrics (아크릴-황산동 복합체로 제조한 도전성 섬유 및 혼방한 모직물의 물성에 관한 연구)

  • 정영진;이명환;최해욱;이기환
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.8-15
    • /
    • 1999
  • Electroconductive fiber was obtained by acryl fiber treated with $CuSO_4$. The Properties and structure of fiber and fabric such as mechanical property, electrical conductivity, fine structure, electrification were investigated. The experimental results are as follows 1) The electrical conductivity of the conducting fiber was greatly increased but fine structure and physical properties were similar to acryl fiber 2) Fabric made by mix spinning with conducting fiber was shown great electrification effect. 3) In the mix spinning with conducting fiber, it was necessary to use different. finishing such as milled finish because stiffness of fabric made by mix spinning with conducting fiber was increased and elastic recovery was decreased. 4) The antimicrobial activity of electroconductive fiber blended wool was effective by Cu component for shake flask test.

  • PDF

Implementation of Wearable Sensor Glove using Pulse-wave Sensor, Conducting Fabric and Embedded System (맥파 측정 센서와 전도성 섬유, 임베디드 시스템 기반의 웨어러블 센서 글러브 구현)

  • Lee, Young-Bum;Lee, Byung-Woo;Lee, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.205-209
    • /
    • 2007
  • Today, there are research trends about the wearable sensor device that measures various bio-signals and provides healthcare services to user using e-Health technology. This study describes the wearable sensor glove using pulse-wave sensor, conducting fabric and embedded system. This wearable sensor glove is based on the pulse-wave measurement system which is able to measure the pulse wave signal in much use of oriental medicine on the basis of a research trend of e-Health system.

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

Preparation and applications of electrically conducting fabrics

  • Lee, Jun-Young;Jinsoo Joo;Lim, Jeong-Ok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.25-26
    • /
    • 2003
  • Electrically conducting polymers such as polypyrrole(PPy) or poly(3,4-ethylene dioxythiophene)(PEDOT) were sequentially polymerized chemically and electrochemically on various kinds of woven fabrics, giving rise to the fabrics with high electrical conductivity. The specific volume resistivity of the fabric prepared in this study was extremely low as 0.2 $\Omega$-cm. We figured out the electrically conducting fabrics were practically useful for many applications such as an EMI shielding material, a flexible surface heating element or a strain sensor for large deformation.

  • PDF

Preparation and Physical Properties of Conductive Poly(acrylonitrile) Fabrics Containing Polypyrrole (폴리피롤을 이용한 전도성 아크릴 직물의 제조 및 물성)

  • 이영관;조재춘
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.276-280
    • /
    • 2000
  • A conductive poly(acrylonitrile)/polypyrrole composite fabric was prepared. A conductive composite was prepared by the impregnation of PAN fabric into a mixed solution of pyrrole and oxidant in order to induce the in-situ polymerization of a conducting polymer into the matrix fabric. In the composite formation, the reaction condition was optimized to achieve the best properties, and the effect of the externally-added arylsulfonate dopants on the physical properties was examined. As a result, the best properties of electrical conductivity, thermal stability, and fastness to washing, was observed in the composite containing an antraquinonesulfonate (AQSA) dopant.

  • PDF

Performance of Serial Communication Protocols through Conducting Threads (전도성사를 매체로 한 직렬 통신 프로토콜 성능)

  • Kim, Na-Young;Kim, Hwan;Kim, Juk-Young;Kwon, Young-Mi
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.21-28
    • /
    • 2011
  • Recently medical and entertainment applications using conducting textile are suggested, but the data of conducting threads are not characterized, classified and verified. Only the data sheet published by manufacturing companies is available. Thus we need to verify the performances of the threading threads in communication. And we need a guideline if the existing communication protocols can be used for the conducting threads communication or the new specific communication protocols have to be developed for the communication. This paper classifies the characteristics of conducting threads made by domestic and overseas companies. Based on the criteria we classified conducting threads into three classes: class A, class B and class C. Further we carried out experiments to verify the adaptability of existing simple serial communication protocols such as RS232. Six different conducting threads are used in experiments and the length of each thread was 0.5m, 1m, 2m and 3m. The data transmission rate and error rate are collected and analyzed. RS485 is very prone to error due to static electricity from human and environment. So it may not be appropriate as long-distance communication protocol up to 12km which is possible in theory. RS232 shows stable and error-less data transmission ability even though every conducting thread didn’t show transmission capability over RS232. USB protocol shows high data rate transmission but the distance cannot be exceeded over 2m. Additionally, USB requires stable power supply. But if the power is supplied through conducting thread, its function is not.

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.

Static Fluid Structure Interaction Analysis of Wind Turbine Blade Skin Fabric (풍력발전기 블레이드 패브릭 스킨의 정적 유체-구조연성 해석에 관한 연구)

  • An, Hyung-ju;Bae, Jae-sung;Hwang, Jai-hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2016
  • This study analyzes the fabric skin of a wind turbine blade. The fabric skin is a membrane structure that was analyzed using a static Fluid Structure Interaction (FSI) method. For this study the blade of large 5 MW wind turbine was selected. In order to examine the validity of the analysis, a variety of reference data were used. Before conducting static FSI analysis, a Computational Fluid Dynamics (CFD) analysis and modal analysis were done. Then interaction analysis was conducted. FSI analysis was done with imported Aerodynamic data that resulted from the CFD analysis. The resulting observations about the membrane structure, inherent tensions, deformation of the final structure, and aerodynamic forces caused by deformation are reported.

Computational Analysis of Heracron Fabric at High-velocity Impact (Heracron 직물의 고속 충돌 해석)

  • Kim, YunHo;Choi, Chunghyeon;Kumar, Sarath Kumar Sathish;Cha, JiHun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • Advanced fiber fabrics have been utilized in not only anti-stabbing and bullet-proofing for body armor but also various industrial fields including vehicular armor and spacecraft structure. Furthermore, there have been a number of research to improve the ballistic performance of advanced fabrics introducing many computational approaches. In our research, an advanced fabric, Heracron manufactured in South Korea was modelled firstly using Autodyn, a commercial software specializing in impact and explosion phenomenon. The sensitivity of the input parameters was also confirmed by conducting simulations. To verify the numerical modelling, we measured and compared the simulation results with velocity decrements after impact involving one, three, and five layers of Heracron under 200-500 m/s impacts by an aluminum spherical projectile. The Heracron fabric was successfully modelled using Autodyn.