• 제목/요약/키워드: conditions for optimal analysis

검색결과 1,674건 처리시간 0.034초

기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구 (A study on automatic selection of optimal cutting condition on machining in view of economics)

  • 이길우;이용성
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

반응표면 분석법을 이용한 트리클로로에틸렌의 공대사적 분해조건 최적화 (Optimization of Cometabolic Trichloroethylene Degradation Conditions by Response Surface Analysis)

  • 윤성준
    • KSBB Journal
    • /
    • 제15권4호
    • /
    • pp.393-397
    • /
    • 2000
  • The cometaboic biodegradation conditionso f trichloroethylene(TCE) by Burkholderia cepacia G4 were optimized using response surface analysis. The experimental sets of phenol concentration temperature and pH were designed using central composite experimental design. The optimal conditions of phenol concentration temperature and pH were determined to be 0.91 ppm 21.5$^{\circ}C$ and 7.65 respectively by the Ridge analysis of the contour plot for TCE biodegradation rates. The TCE biodegradation rate could be enhanced up to 2.43 nmol.mg protein$.$min by response surface methodology.

  • PDF

유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계 (Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms)

  • 윤인세;최흥섭;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

난방시스템 및 개구부의 통합제어를 위한 규칙기반제어법 및 인공신경망기반제어법의 성능비교 (Development of Integrated Control Methods for the Heating Device and Surface Openings based on the Performance Tests of the Rule-Based and Artificial-Neural-Network-Based Control Logics)

  • 문진우
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.97-103
    • /
    • 2014
  • This study aimed at developing integrated logic for controlling heating device and openings of the double skin facade buildings. Two major logics were developed-rule-based control logic and artificial neural network based control logic. The rule based logic represented the widely applied conventional method while the artificial neural network based logic meant the optimal method. Applying the optimal method, the predictive and adaptive controls were feasible for supplying the advanced thermal indoor environment. Comparative performance tests were conducted using the numerical computer simulation tools such as MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation). Analysis on the test results in the test module revealed that the artificial neural network-based control logics provided more comfortable and stable temperature conditions based on the optimal control of the heating device and opening conditions of the double skin facades. However, the amount of heat supply to the indoor space by the optimal method was increased for the better thermal conditioning. The number of on/off moments of the heating device, on the other hand, was significantly reduced. Therefore, the optimal logic is expected to beneficial to create more comfortable thermal environment and to potentially prevent system degradation.

용접 비드 형상에 대한 용접공정 변수의 민감도 해석에 관한 연구 (A study on the sensitivity analysis of welding process parameters on weld bead geometry)

  • 이세환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.274-280
    • /
    • 1998
  • The welding technology and qualities are developed significantly, in recent years, in the use of automated processing technology and welding robot systems. But these automated welding technologies have many difficulties for finding the optimal welding parameter conditions. Because of the lack of mathematical model for determination of optimal welding process parameters. In this study, the sensitivity analysis of the empirical equations for finding weld bead width, height and penetration depth by using the published formulae. The selected major welding process parameters effected to weld bead geometries are the welding speed, current, voltage and weld wire diameter.

  • PDF

사무용 폐지에서 유래된 글루코오스를 이용한 레불린산 생산 (Production of Levulinic Acid Using Glucose Derived from Office Waste Paper)

  • 반세은;박윤;이성초;임예은;이재원
    • 신재생에너지
    • /
    • 제17권2호
    • /
    • pp.32-39
    • /
    • 2021
  • The optimal conditions for producing levulinic acid from office waste paper were investigated. Glucose was produced by enzymatic hydrolysis and its yield maximized by varying the soaking time of the substrate and amounts of enzyme and substrate. The optimal conditions to produce levulinic acid using the hydrolysate were determined by response surface methodology, with reaction temperature and catalyst (sulfuric acid) concentration as independent variables. The production model was assessed with an ANOVA regression analysis, and the results indicate its suitability for levulinic acid production (p, F, and lack-of-fit values were 0.003, 20.1, and 0.058, respectively). The optimal conditions were a reaction time of 56.27 min and catalyst concentration of 5.9% with a predicted yield of 2.588 g/L. We verified the findings under the same conditions and obtained 2.323 g/L of levulinic acid.

A BIOECONOMIC MODEL OF A RATIO-DEPENDENT PREDATOR-PREY SYSTEM AND OPTIMAL HARVESTING

  • Kar T.K.;Misra Swarnakamal;Mukhopadhyay B.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.387-401
    • /
    • 2006
  • This paper deals with the problem of a ratio-dependent prey- predator model with combined harvesting. The existence of steady states and their stability are studied using eigenvalue analysis. Boundedness of the exploited system is examined. We derive conditions for persistence and global stability of the system. The possibility of existence of bionomic equilibria has been considered. The problem of optimal harvest policy is then solved by using Pontryagin's maximal principle.

500W급 공냉식 고분자 연료전지 설계, 제작 및 운전 특성 (The Analysis of the Operating Characteristics In A 500W Portable Air Cooled Polymer Electrolyte Membrane Fuel Cell (PEMFC))

  • 손영준;양태현;박구곤;임성대;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2004년도 수소연료전지공동심포지움 2004논문집
    • /
    • pp.37-42
    • /
    • 2004
  • To maintain proper operating conditions is important to get optimal output power of a PEMFC stack. The air cooled fuel cell stack is widely used in sub kW PEMFC systems. A 500W air cooled PEMFC stack was experimentally investigated to evaluate the design performance and to get optimal operating conditions for the portable application. The relationship between the operating conditions and the performance was analyzed. The results can be used as design criteria for portable PEMFC under various conditions.

  • PDF

실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구 (Development of a precision machining process for the outer cylinder of vacuum roll for film transfer)

  • 이효은;김종선
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology

  • Jang, Seol;Lee, A. Yeong;Lee, A. Reum;Choi, Goya;Kim, Ho Kyoung
    • Integrative Medicine Research
    • /
    • 제6권4호
    • /
    • pp.388-394
    • /
    • 2017
  • Background: The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. Methods: The optimal extraction temperature ($X_1$), extraction time ($X_2$), and methanol concentration ($X_3$) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. Results: Statistical analyses revealed that three variables and the quadratic of $X_1$, $X_2$, and $X_3$ had significant effects on the yields and were followed by significant interaction effects between the variables of $X_2$ and $X_3$ (p<0.01). A 3D response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, $69^{\circ}C$; extraction time, 34?min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). Conclusion: The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.