• Title/Summary/Keyword: conditioning factor

Search Result 492, Processing Time 0.03 seconds

Numerical Analysis of Turbulent Carbon Dioxide Flow and Heat Transfer under Supercritical State in a Straight Duct with a Square Cross-Section (초임계상태 이산화탄소의 정사각 단면 직덕트 내 난류유동 및 열전달의 전산해석)

  • 최영돈;주광섭;김용찬;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1004-1013
    • /
    • 2002
  • Turbulent carbon dioxide flows and cooling heat transfers under supercritical state in a straight duct with a square cross-section are numerically analyzed employing low Reynolds number $\kappa-\varepsilon$ model and algebraic stress model. The flow is assumed to be (quasi-incompressible. Predicted Nusselt number and friction factor are compared with the experimental data, Blasius correlation for friction factor and Dittus-Boelter correlation for Nusselt number. Computational results for the Fanning's friction factor agree well with the all Rohsenow and Choi's correlation, Liou and Hwang's experimental data and Blasius correlation. The results obtained by algebraic stress model agree more with the Liou and Hwang's experimental data, while the results obtained by low Reynolds number $\kappa-\varepsilon$ model agree more with Blasius correlation. In the computation of Nusselt number, Dittus-Boelter correlation can not exactly fit the computational results. Therefore we propose the new correlation$Nu=0.053Re^{0.73}Pr^{0.4}$for the turbulent cooling heat transfer of carbon dioxide under supercritical state.

A Study on the Measuring Method of Ice Slurry Viscosity Using the Falling Sphere Viscometer (낙구식 점도계를 이용한 아이스슬러리의 점도측정에 관한 연구)

  • Kim, Myoung-Jun;Yu, Jik-Su;Lim, Jae-Keun;Choe, Soon-Youl
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.593-598
    • /
    • 2007
  • The present study has dealt with the measuring method of ice slurry viscosity using falling sphere viscometer. The experimental apparatus was composed by test section and high-speed video system. And the spheres used in this study were alumina and glass. The main parameters were ice packing factor (IPF) and falling velocity of sphere so the acquired results were discussed for these parameters. The viscosity of ice slurry was calculated by using measured falling velocity and moving distance at instantaneous time and the Stokes hypothesis was used for this calculation. It was clarified that possible measuring range was $IPF\;=\;0.06{\sim}0.14$ of this type of measuring device and measuring method. In addition, it was clarified that the viscosity of ice slurry increased to increase of ice packing factor (IPF) of ice slurry.

Fluid dynamical characteristics of microencapsulated phase change material slurries (미립잠열슬러리의 유체역학적 특성연구)

  • 이효진;이승우;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.549-559
    • /
    • 1999
  • An experimental study was peformed to measure the viscosity of microencapsulated PCM slurries as the functions of its concentration and temperature, and also influence to its fluid dynamics. For the viscosity measurement, a rotary type viscometer, which was equipped with temperature control system, was adopted. The slurry was mixed with water and Sodium Lauryl Sulphate as a surfactant by which its suspended particles were dispersed well without the segregation of particles during the experiment. The viscosity was increased as the concentration of MicroPCM particle added. The surfactant increased 5% of the viscosity over the working fluid without particles. Experiments were proceeded by changing parameters such as PCM particles'concentration as well as the temperature of working fluid. As a result, a model to the functions of temperature for the working fluid and its particle concentration is proposed. The proposed model, for which its standard deviation shows 0.8068, is agreed well with the reference's data. The pressure drop was measured by U-tube manometer, and then the friction factor was obtained. It was noted that the pressure drop was not influenced by the state of PCM phase, that is solid or liquid in its core materials at their same concentration. On the other hand, it was described that the pressure drop of the slurry was much increased over the working fluid without particles. A friction factor was placed on a straight line in all working fluids of the laminar flow regardless of existing particles as we expected.

  • PDF

An Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fin (광폭 루버 핀이 장착된 핀-관 열교환기의 공기측 전열 성능에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.254-262
    • /
    • 2015
  • Heat transfer rate can be increased by increasing the heat transfer area. In this study, wide louver fin-and-tube heat exchangers with $P_t/P_l=1.03$ were tested and compared with louver fin-and-tube heat exchanger with $P_t/P_l=0.6$. Results show that heat transfer capacities of wide louver samples are larger (9.8% at one row, 13.6% at two row and 4.1% at three row) than those of conventional louver samples. Considering the area ratio of 1.78, the increase of heat transfer capacity is rather small, possibly due to the smaller heat transfer coefficient and fin efficiency of the wide louver sample. The j factor of the louver fin was 67% larger at one row, 42% larger at two row and 52% larger at three row. The f factor of the louver fin was 81% larger at one row, 63% larger at two row and 60% larger at three row. The effect of fin pitch on j and f factors are not pronounced and the j factor decreased as the number of tube row increased.

A Study on Flow Characteristics of Branch Type Sparger in Drain Tank for Depressurization (감압용 배수탱크내의 분기형 증기분사기의 유동특성에 관한 연구)

  • 김광추;박만흥;박경석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.356-367
    • /
    • 2001
  • A numerical analysis on branch type sparger in drain tank for depressurization is performed to investigate the flow characteristics due to the change of design factor. As the result of this study, sparger\\`s flow resistance coefficient(K) is 3.53 at the present design condition when engineering margin for surface roughness is considered as 20%, and flow ratio into branch pipe ($Q_s/Q_i$) is 0.41. The correlation for calculating flow resistance coefficients as design factor is presented. Flow resistance coefficient is increased as section area ratio of branch pipe for main pipe and outlet nozzle diameter of main pipe decreasing, but the effects of branch angle and inlet flow rate of main pipe are small. As the change rate of ($Q_s/Q_i$)becomes larger, the change rate of flow resistance coefficient increases. The rate of pressure loss has the largest change as section area ratio changing. The condition of maximum flow resistance in sparger is when the outlet nozzle diameter ratio of main pipe ($D_e/D_i$) is 0.167, the section area ratio ($A_s/A_i$) is 0.1 and the branch angle ($\alpha$) is 55^{\circ}$.

  • PDF

Effect of Rib Pitch on Heat Transfer and Friction Factor in a Two Wall Divergent Channel (2벽면 확대 사각채널에서 리브 피치가 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Jeong, Seong Soo;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.175-180
    • /
    • 2014
  • Experimental investigations of the heat transfer and friction factors in the ribbed divergent rectangular channel with the channel exit hydraulic diameter to inlet hydraulic diameter ratio of 1.16 were performed. The surface heaters were mounted onto the two opposite walls. The main experimental parameter is the ratio of rib pitch (p) to height (e), at which the ratios (p/e) of 6, 10, and 14 are considered in the channel with ribs on one wall only. The straight ribbed square channel is also considered as a comparison. The major findings are that the ratio of p/e = 6 shows the highest values in the heat transfer and the ratio of p/e = 10 indicates the greatest friction factor in the ribbed divergent channel. Editor's note:No major changes or corrections needed. Well written.

Heat Transfer Coefficient and Shear Factor Subjected to Both Oscillating Flow and Oscillating Pressure in Pulse Tubes (주기적인 유동과 압력의 변화를 수반하는 맥동관의 열전달계수와 전단계수)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.220-227
    • /
    • 2007
  • Heat transfer and momentum transfer under conditions of both oscillating flow and oscillating pressure within pulse tubes show very different behavior from those for steady state conditions. The analytic solutions of axial velocity and temperature of the gas within pulse tubes were obtained by assuming that the variations in pressure and temperature were purely sinusoidal and small. The shear stress and the heat flux at the tube wall obtained from the solutions are expressed in terms of the cross-sectional averaged velocity, the difference between mean temperature and instantaneous cross-sectional averaged temperature and the difference between mean pressure and instantaneous pressure. It is shown that the complex shear factor, which has been applied to momentum transfer of incompressible oscillating flow, and the complex Nusselt number, which has been applied to either heat transfer with oscillating pressure only or heat transfer of incompressible oscillating flow, could also be used for momentum transfer and heat transfer subjected to both oscillating flow and oscillating pressure, respectively.

A Field Application Case of Direct Ice Slurry Transporting System for District Cooling (지역냉방용 직접순환식 아이스슬러리 시스템의 현장적용 사례)

  • Yoo, Ho-Seon;Lee, Sang-Hoon;Lee, Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.496-504
    • /
    • 2009
  • In order to investigate the feasibility of a direct ice slurry transporting system for the purpose of district cooling, a case study of field application is performed. The research aims include the field measurement of ice packing factor, the performance of coldness delivery, and the branching characteristics of ice slurry. Two representative types of pipe branch are dealt with in this work. For the slurry flow with ice volume fraction of 0.16 or less, the pipe blocking due to aggregation is not observed. Based on the time-wise variation of temperature in the storage tank, a calculating method of ice packing factor is newly developed, which seems to be useful when the brine concentration is unknown. It is confirmed that the mass flow rate of ice slurry per unit cooling load is markedly reduced with increasing the ice content. The pumping power also decreases, but remains unchanged for high ice fractions. The distribution of ice particle before and after branching shows a good uniformity within the range of 5% difference, but yields a unique trend depending on the flow rate.

Experimental Study on the Heat Transfer Characteristics of Spiral Fin-Tube Heat Exchangers (나선형 핀튜브 열교환기의 열전달 특성에 관한 실험적 연구)

  • Yun Rin;Kim Yongchan;Kim Sru;Choi Jong Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.529-535
    • /
    • 2005
  • This study experimentally examines the air-side performance of spiral finned tube heat exchangers. The effects of fin spacing, fin height, and tube alignment were investigated. Reduction of fin spacing decreased the Colburn j factor. However, the effect of fin height on the Colburn j factor was negligible. An increase of tube row decreased the Nusselt number for both staggered and in-line tube alignments. However, the decrease of the Nusselt number for the in-line tube alignment was much more significant than that of the staggered tube alignment. The average Nusselt number of the staggered tube alignment was larger than that of the in-line tube alignment by $10\%$ when the Reynolds number ranged from 300 to 1700. An empirical correlation of the Nusselt number was developed by using geometric parameters of heat exchanger and correction factors. The correction factor considered the effects of tube alignment and number of tube rows on the heat transfer. The proposed correlation yielded a mean deviation of $4\%$ from the present data.

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF