• Title/Summary/Keyword: condition used for diagnosis

Search Result 440, Processing Time 0.023 seconds

Diagnosis for the Transformer depend on Moisture and Furfural Detecting in Oil (절열유중의 수분 및 Furfural 검출을 이용한 유입변압기 상태진단)

  • Choi Gwang-beom;Eo Soo-young;Kweon Dong-jin;Lee Dong-joon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.546-552
    • /
    • 2005
  • In this paper, a present condition with gas-in-oil diagnosis which used to condition analysis for oil insulated transformer is investigated and reason why hydrogen used to basic diagnosis for the transformer is described. This paper gives an overview of background knowledge that should to consider as moisture detecting of oil immersed paper and how could we approach to life expectancy of oil insulated transformer through detecting furfural compound.

Development of Real-Time Condition Diagnosis System Using LabVIEW for Lens Injection Molding Process (LabVIEW 를 활용한 실시간 렌즈 사출성형 공정상태 진단 시스템 개발)

  • Na, Cho Rok;Nam, Jung Soo;Song, Jun Yeob;Ha, Tae Ho;Kim, Hong Seok;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, a real-time condition diagnosis system for the lens injection molding process is developed through the use of LabVIEW. The built-in-sensor (BIS) mold, which has pressure and temperature sensors in their cavities, is used to capture real-time signals. The measured pressure and temperature signals are processed to obtain features such as maximum cavity pressure, holding pressure and maximum temperature by the feature extraction algorithm. Using those features, an injection molding condition diagnosis model is established based on a response surface methodology (RSM). In the real-time system using LabVIEW, the front panels of the data loading and setting, feature extraction and condition diagnosis are realized. The developed system is applied in a real industrial site, and a series of injection molding experiments are conducted. Experimental results show that the average real-time condition diagnosis rate is 96%, and applicability and validity of the developed real-time system are verified.

Development of Intelligent System for Moving Condition Diagnosis of the Machine Driving System (기계구동계의 작동상태 진단을 위한 지능형 시스템의 개발)

  • 박흥식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.42-49
    • /
    • 1998
  • This wear debris can be harvested from the lubricants of operating machinery and its morphology is directly related to the damage to the interacting surface from which the particles originated. The morphological identification of wear debris can therefore provide very early detection of a fault and can also often facilitate a diagnosis. The purpose of this study is to attempt the developement of intelligent system for moving condition diagnosis of the machine driving system. The four shape parameter(50% volumetric diameter, aspect, roundness and reflectivity) of war debris are used as inputs to the neural network and learned the moving condition of five values(material3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristics and recognized the moving condition and materials very well by neural network.

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Development of On-tine Partial Discharge Monitoring System for High-Voltage Motor Stator Windings (고압 전동기 고정자 권선의 운전중 절연감시 시스템 개발)

  • Hwang, D.H.;Sim, W.Y.;Park, D.Y.;Gang, Dong-Sik;Kim, Y.J.;Song, S.O.;Kim, H.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.224-226
    • /
    • 2001
  • In this paper, a novel high-voltage motor monitoring system (HVMMS) is proposed. This system monitors the insulation condition of the stator winding by on-line measurements of partial discharge (PD). Sensor, EMC (Epoxy-Mica Coupler) is used for PD measurement PD signals are continuously measured and digitized with a peak-hold A/D converter to build the database of the high-voltage motor's insulation condition. Also, this system can communicate with the central monitoring system via RS-485. This helps more efficient operation and maintenance of the generator.

  • PDF

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis (풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교)

  • Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.77-87
    • /
    • 2023
  • Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • Diagnosis and management of skin condition is a very basic and important function in performing its role for workers in the beauty industry and cosmetics industry. For accurate skin condition diagnosis and management, it is necessary to understand the skin condition and needs of customers. In this paper, we developed SCIS, a big data-based skin care information system that supports skin condition diagnosis and management using social media big data for skin condition diagnosis and management. By using the developed system, it is possible to analyze and extract core information for skin condition diagnosis and management based on text information. The skin care information system SCIS developed in this paper consists of big data collection stage, text preprocessing stage, image preprocessing stage, and text word analysis stage. SCIS collected big data necessary for skin diagnosis and management, and extracted key words and topics from text information through simple frequency analysis, relative frequency analysis, co-occurrence analysis, and correlation analysis of key words. In addition, by analyzing the extracted key words and information and performing various visualization processes such as scatter plot, NetworkX, t-SNE, and clustering, it can be used efficiently in diagnosing and managing skin conditions.

Development of Continuous Monitoring System for Generator Stator Insulations (발전기 고정자 권선 절연상태의 상시 감시 시스템 개발)

  • Shin, Byoung-Chol;Hwang, Don-Ha;Kim, Yong-Joo;Kim, Jeong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2212-2214
    • /
    • 1999
  • In this paper, a novel Generator On-line Diagnosis System (GODS) is proposed. This system monitors the insulation condition of the stator winding by on-line measurements of partial discharge (PD). Sensor, such as SSC (Stator Slot Coupler) and RFCT (Radio Frequency Current Transformer) are used for PD measurement. PD signals are continuously measured and digitized with a high speed A/D converter to build the database of the generator's insulation condition. Also this system can communicate with the central monitoring system via RS-485. This helps more efficient operation and maintenance of the generator.

  • PDF

Fault Diagnosis of Ball Bearings within Rotational Machines Using the Infrared Thermography Method

  • Kim, Dong-Yeon;Yun, Han-Bit;Yang, Sung-Mo;Kim, Won-Tae;Hong, Dong-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.558-563
    • /
    • 2010
  • In this paper, the novel approach for the fault diagnosis of the bearing equipped with rotational mechanical facilities was studied. As research works, by applying the ball bearing used extensively in many industrial fields, experiments were conducted in order to propose the new prognostic method about the condition monitoring for the rotational bodies based on the condition analysis of infrared thermography. Also, by using the vibration spectrum analysis, the real time monitoring was performed. As results, it was confirmed that infrared thermography method could be adapted into monitor and diagnose the fault for bearing by evaluating quantitatively and qualitatively the temperature characteristics according to the condition of the ball bearing.