• 제목/요약/키워드: condensing pressure$NH_3$

검색결과 10건 처리시간 0.022초

과열도 변화에 의한 $NH_3$ 냉동장치의 성능특성 연구 (The Study on Performance Characteristics due to the Superheat Temperature of $NH_3$ Refrigeration System)

  • 전상신;권일욱;하옥남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1334-1339
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the $NH_3$ gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 14.5bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $1^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF

$NH_3$ 냉동장치의 과열도 변화에 의한 성능 특성 연구 (The Study on Performance Characteristics of Superheating the Suction Vapor in $NH_3$ Refrigeration System)

  • 권일욱;하옥남
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.756-761
    • /
    • 2004
  • Since the use of CFC and HCFC refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the NH$_3$ gas to study the performance characteristics from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 14.5 bar to 16.0 bar by 0.5 bar and for superheat temperature from $0^{\circ}C$ to 1$0^{\circ}C$ by 1$^{\circ}C$ at each condensing pressure. As a result of experiment, when the superheat temperature is 1$^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

열교환기 구조 변화에 따른 $NH_3$와 R22의 성능특성연구 (The Study on Performance Characteristics of $NH_3$ and R22 due to Structure of Heat Exchanger)

  • 하옥남;하경수;이승재;정송태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.60-65
    • /
    • 2005
  • Nowadays HCFCs refrigerant are restricted because it cause depletion of ozone layer. However, natural gases such as ammonia as an organic compound, propane and propylene as hydrocarbon are easy and cheap to obtain as well as environmental. Accordingly, this experiment apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 15bar to 16bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

  • PDF

고밀도 열교환기를 이용한 $NH_3$냉동장치의 성능 특성 연구 (The Study on Performance Characteristics of NH3 Refrigeration System Using Optimum Heat Exchanger)

  • 이승재;전상신;권일욱;이종인;하옥남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1276-1281
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the ammonia gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 15.0bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $0^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF

$NH_3$ 냉동장치의 과열도 변화에 의한 성능 특성 연구 II -열교환기 타입 변경- (The Study on Performance Characteristics of $NH_3$ Refrigeration System for Various Degree of Superheat - Part II : The Change of Heat Exchanger Type -)

  • 하옥남;권일욱;전상신;이승재;정송태;하경수;윤갑식;이종인;홍경한
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.297-302
    • /
    • 2005
  • Since the use of CFC and HCFC refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the $NH_3$ gas to study the performance characteristics of $NH_3$ refrigeration system by the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1,500 kPa to 1,600 kPa and for degree of superheat from $0^{\circ}C\;to\;10^{\circ}C$ at each condensing pressure. As a result of experiment, when the degree of superheat is $0^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

An Application of Optimum Heat Exchanger for the Grasp on Performance Characteristics of $NH_3$ Refrigeration System

  • 허옥남;권일욱;홍석주;김재열;이종인;전상신;하경수;이승재;박찬수;정송태
    • 한국공작기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.69-74
    • /
    • 2005
  • Since the use of CFC and HCFC refrigerants is to be restricted due to the depletion of ozone layer, this experiment applies the $NH_{3}$ gas to study the performance characteristics from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1500kPa to 1600kPa by 50kPa and for degree of superheat from $0^{circ}$ to $1^{circ}$ by $10^{circ}$ at each condensing pressure. As a result of experiment, 1) As degree of superheat increased, evaporating pressure of the compressor decreased so equilibrium temperature decreased. And specific volume of refrigerant vapors increased so refrigerant mass flow and heat load of the evaporator decreased. 2) An influence of change of condensing pressure on heat load of the evaporator was insignificant. 3) With the identical degree of superheat, change of compressed temperature was insignificant according to each condensing pressure, so there was little change in enthalpy.4) when the degree of superheat is $0^{circ}$C at each condensing pressure, the refrigeration system has the hi띤est performance.

$NH_3$와 R22를 사용한 냉동장치의 성능특성 비교 (The Comparison of Performance Characteristics in Refrigeration System using $NH_3$ and R22)

  • 하옥남;이규태;하경수;정송태;김진현;홍성인;윤갑식;김양현;권일욱;이종일
    • 설비공학논문집
    • /
    • 제18권5호
    • /
    • pp.377-383
    • /
    • 2006
  • Recently, production and use of Freon substances are restrained due to destruction of ozone layer and grobal warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 1,500 kPa to 1,600 kPa and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

냉매 R717과 R22를 작동유체로 이용한 냉동장치의 성능특성에 관한 연구 (The Study on Performance Characteristics in Refrigeration System using R717 and R22 as working fluid)

  • 김진현;김재근;김종길;김양현;홍석주;하옥남
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.495-500
    • /
    • 2006
  • Nowadays HCFCs refrigerant are restricted because it cause depletion of ozone layer. However, natural gases such as ammonia as an organic compound, propane and propylene as hydrocarbon are easy and cheap to obtain as well as environmental. Accordingly, this experiment apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 15bar to 16bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

  • PDF

The Study on the Performance Characteristics due to the Degree of Superheat in $NH_3$ Refrigeration System III - The Comparison of Heat Exchanger Types -

  • Hong Suck-Ju;Ha Ok-Nam;Lee Kyu-Tae;Ha Kyung-Soo;Jeong Song-Tae;Hong Seong-In;Yun Kab-Sig;Kim Yang-Hyun;Kwon Il-Wook;Lee Jong-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권1호
    • /
    • pp.7-13
    • /
    • 2006
  • Because the usage of CFC and HCFC based refrigerants are restricted due to the depletion of ozone layer, the $NH_3$ gas, in the experiment is evaluated to the performance characteristics for the superheat control to improve the energy efficiency. The experiment is carried out about the condensing pressure of refrigeration system from 1,500 kPa to 1,600 kPa through the degree of superheat from 0 to $10^{\circ}C$ at each condensing pressure. As a result, in the case of shell and tube type of heat exchanger, the COP is more efficient than other cases at the degree of superheat $1^{\circ}C$ at each condensing pressure. In the case of shell and disk type of heat exchanger, the COP is the most efficient at the degree of superheat 0.

$NH_3$ 냉동장치의 과열도에 관한 성능 특성 연구(III) -열교환기 타입별 비교- (The Study on the Performance Characteristics due to the Degree of Superheat in $NH_3$ Refrigeration System (III) -The Comparison of Heat Exchanger Types-)

  • 이종인;김양현;박찬수;하옥남
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1132-1138
    • /
    • 2005
  • Recently, production and use of freon substances are restrained due to depletion of ozone layer and global warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study is to find the optimal operating conditions by comparing the performance between the shell and tube type and shell and disk type heat exchangers using the ammonia refrigerant, and to verify the superiority of the shell and disk type heat exchanger that is not used in field of refrigeration and air conditioning. Finally, this study shows that the shell and disk type heat exchanger is applicable to the ammonia refrigeration system, and this system minimizes the refrigerant charge and installation space.