• 제목/요약/키워드: condensation and droplet modes

검색결과 2건 처리시간 0.014초

Modeling of non-isothermal CO2 particle leaked from pressurized source: II. Behavior of single droplet

  • Chang, Daejun;Han, Sang Heon;Yang, Kyung-Won
    • Ocean Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.33-47
    • /
    • 2012
  • This study revealed the behavior of droplets formed through leak process in deep water. There was a threshold depth named the universal attraction depth (UAD). Droplets rose upward in the zone below the UAD called the rising zone, and settled down in the zone above the UAD called the settling zone. Three mass loss modes were identified and formulated: dissolution induced by mass transfer, condensation by heat transfer and phase separation by pressure decrease. The first two were active for the settling zone, and all the three were effective for the rising zone. In consequence, the life time of the droplets in the rising zone was far shorter than that of the droplets in the settling zone.

겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자 (Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter)

  • 박승식
    • 한국입자에어로졸학회지
    • /
    • 제17권3호
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).