• Title/Summary/Keyword: concrete-steel interaction

Search Result 250, Processing Time 0.036 seconds

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Partial interaction analysis of multi-component members within the GBT

  • Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.625-638
    • /
    • 2017
  • This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

Experimental study on circular concrete filled steel tubes with and without shear connectors

  • Chithira, K.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.97-114
    • /
    • 2014
  • This paper deals with a study on ultimate strength behaviour of eccentrically loaded CFT columns with and without shear connectors. Thirty specimens are subjected to experimental investigation under eccentric loading condition. P-M curves are generated for all the test specimens and critical eccentricities are evaluated. Three different D/t ratios such as 21, 25 and 29 and L/D ratios varying from 5 to 20 are considered as experimental parameters. Six specimens of bare steel tubes as reference specimens, twelve specimens of CFT columns without shear connectors and twelve specimens of CFT columns with shear connectors, in total thirty specimens are tested. The P-M values at the ultimate failure load of experimental study are found to be well agreed with the results of the proposed P-M interaction model. The load-deflection and load-strain behaviour of the experimental column specimens are presented. The behaviour of the CFT columns with and without shear connectors is compared. Experimental results indicate that the percentage increase in load carrying capacity of CFT columns with shear connectors compared to the ordinary CFT columns is found to be insignificant with a value ranging from 6% to 13%. However, the ductility factor of columns with shear connectors exhibit higher values than that of the CFT columns without shear connectors. This paper presents the proposed P-M interaction model and experimental results under varying parameters such as D/t and L/D ratios.

Hysteresis Performance of CFT Columns subjected to Low Axial Force and Cyclic Lateral Loads (저축력과 반복수평력을 받는 콘크리트충전 강관기둥의 이력특성)

  • Choi, Sung Mo;Kang, Suk Bin;Kim, Dae Joong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.207-217
    • /
    • 2003
  • The Concrete Filled Steel Tube (M) Column has excellent structural capacities that are in accordance with the interaction effect between the steel tube and concrete. CFT structure has been focussed on a struc tural system for high-rise buildings. The purpose of this study is to evaluate the strength and deformation capacities of CFT columns that are subject to constant axial and cyclic lateral load. The test parameters are diameters to the thickness ratio of the steel tube, axial load ratios, and the shapes of the tube. Total eighteen specimens were fabricated to clarify the energy absorption capacity of the CFT columns. Experimental results were summarized for their ultimate strengths and deformation capacities.

Shear Resistance of Concrete Circular columns Due to Arch action : Experimental Study (아취작용에 의한 콘크리트 원형기둥의 전단저항;실험적 고찰)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.178-185
    • /
    • 1999
  • Six of scaled concrete circular columns were experimentally investigated for the contribution of arch action to the column lateral resistance. For this the specimens with the variation of tranverse hoop steel spacing were tested in absence of axial loading All specimens showed the flexure governing behavior pattern irrelevant to transverse hoop spacing. This indicates that the role of arch action should be understood as the intermediate mechanism causing the interaction between shear and flexural mechanisms A simple truss model was proposed to qualitatively explain this notation but further study is needed to advance its application to general columns.

  • PDF

Nonlinear Finite Element Analysis of Reinforced Concrete Structures Considering the Crack and Bond-Slip Effects (균열 및 부착슬립효과를 고려한 철근콘크리트 구조물의 비선형 유한요소해석)

  • 곽효경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.65-70
    • /
    • 1992
  • This study deals with the finite element analysis of the monotonic behavior of reinforced concrete beams and beam-column joint subassemblages. It is assumed that the behavior of these members can be discribed by a plane stress field. Concrete and reinforcing steel are represented by separate material models which are combined together with a model of the interaction between reinforcing bar and concrete through bond-slip to discribe the behavior of the composite reinforced concrete material. To discribe the concrete behavior, a nonlinear orthotropic model is adopted and the crack is discribed by a system of orthogonal cracks, which are rotating as the principal strain directions are changed. A smeared finite element model based on the fracture mechanics principles are used to overcome the numerical defect according to the finite element mesh size. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to estabilish the validity of the proposed model and identify the significance of various effects on the local and global response of reinforced concrete members.

  • PDF

A Study on the Design of Shear Connector of Continuous Composite Bridge (연속합성형 교량의 전단연결재 설계에 관한 연구)

  • Chang, Sung Pil;Kang, Sang Gyu;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.351-362
    • /
    • 1997
  • In designing short to medium-span bridges, continuous composite bridges are becoming popular due to their advantages. However, if the concrete slab in continuous composite bridge is not prestressed, negative moment occurs in the mid-support and creates problems such as cracks in the concrete slab. Therefore. it must be considered in design. Two methods of arrangement of shear connectors were conducted using finite element elastic plastic analysis. Partial interaction theory was introduced and an analytical solution based on this theory was derived. The differences in the degree of interaction were investigated using analytical solutions and finite element analyses of simple composite beam and continuous composite beams. The results of the analyses were used to determine the advantage and disadvantages as well as any precaution when necessary using partial composite during actual design and construction.

  • PDF

Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle (모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가)

  • Kim, Yun-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2016
  • Beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP) which had different transverse reinforcement ratio were tested to evaluate shear contribution in the CFRP and to analyze shear behavior of each test with Mohr's circle. Strain in the CFRP should be evaluated to estimate the shear contribution in the CFRP which is brittle material. Test results were compared each other based on the Mohr's circle which can correlate shear strain with both principal tensile strain and crack angle. With low transverse steel ratio, shear strengthening with CFRP not only increases the shear strength effectively but also minimizes the loss in shear contribution of concrete by limiting the development of crack. With high transverse steel ratio, the effect on shear strengthening with CFRP is not as much as the beam with low ratio. Therefore, the shear contribution in the CFRP should be evaluated based on the strain compatibility which can consider the interaction between steel and CFRP when determining the shear capacity of a strengthened member.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.