• 제목/요약/키워드: concrete-filled tubular (CFT) stub column

검색결과 8건 처리시간 0.018초

Behavior of polygonal concrete-filled steel tubular stub columns under axial loading

  • Zhang, Tao;Ding, Fa-xing;Wang, Liping;Liu, Xue-mei;Jiang, Guo-shuai
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.573-588
    • /
    • 2018
  • The objective of this paper is to investigate the mechanical performances of polygonal concrete-filled circular steel tubular (CFT) stub columns under axial loading through combined experimental and numerical study. A total of 32 specimens were designed to investigate the effect of the concrete strength and steel ratio on the compressive behavior of polygonal CFT stub columns. The ultimate bearing capacity, ductility and confinement effect were analyzed based on the experimental results and the failure modes were discussed in detail. Besides, ABAQUS was adopted to establish the three dimensional FE model. The composite action between the core concrete and steel tube was further discussed and clarified. It was found that the behavior of CFT stub column changes with the change of the cross-section, and the change is continuous. Finally, based on both experimental and numerical results, a unified formula was developed to estimate the ultimate bearing capacity of polygonal CFT stub columns according to the superposition principle with rational simplification. The predicted results showed satisfactory agreement with both experimental and FE results.

The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression

  • Zhu, W.C.;Ling, L.;Tang, C.A.;Kang, Y.M.;Xie, L.M.
    • Computers and Concrete
    • /
    • 제9권4호
    • /
    • pp.257-273
    • /
    • 2012
  • Based on the heterogeneous characterization of concrete at mesoscopic level, Realistic Failure Process Analysis ($RFPA^{3D}$) code is used to simulate the failure process of concrete-filled tubular (CFT) stub columns. The results obtained from the numerical simulations are firstly verified against the existing experimental results. An extensive parametric study is conducted to investigate the effects of different concrete strength on the behaviour and load-bearing capacity of the CFT stub columns. The strength of concrete considered in this study ranges from 30 to 110 MPa. Both the load-bearing capacity and load-displacement curves of CFT columns are evaluated. In particular, the crack propagation during the deformation and failure processes of the columns is predicted and the associated mechanisms related to the increased load-bearing capacity of the columns are clarified. The numerical results indicate that there are two mechanisms controlling the failure of the CFT columns. For the CFT columns with the lower concrete strength, they damage when the steel tube yields at first. By contrast, for the columns with high concrete strength it is the damage of concrete that controls the overall loading capacity of the CFT columns. The simulation results also demonstrate that $RFPA^{3D}$ is not only a useful and effective tool to simulate the concrete-filled steel tubular columns, but also a valuable reference for the practice of engineering design.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

실험 및 데이터 분석에 의한 CFCT 단주 특성 (Characteristics of Concrete Filled Circular Tubular Stub Columns based on Experiment and Data Analysis)

  • 강현식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.161-168
    • /
    • 2001
  • The use of composite members to improve the compressive strength of steel structure is a common practice these days and its efficiency has already been proved by several researches and experiments. The result of concrete filled circular tubular(CFCT) stub column tests is introduced in this paper. The main parameter of this test is the ratio of diameter to thickness of circular hollow section. From the test results, the effect of concrete filled in steel tube on the ultimate strength, the deformation capacity and initial stiffness are discussed. The purpose of this paper is to investigate the effect of various parameters and evaluate the compressive strength of confined concrete. It would contribute to a better understanding of CFT structure, further laboratory experimentations are needed for better accurate estimation on its effect.

  • PDF

용접조립 각형 CFT 단주의 구조특성에 관한 실험적 연구 (An Experimental Study on Structural Performance of Welded Built-up Square CFT Stub Columns)

  • 이성희;최영환;염경수;김진호;최성모
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.645-653
    • /
    • 2008
  • 용접조립 각형강관은 얇은 강판을 L형으로 절곡한 4개의 단위 부재를 플레어 용접으로 용접한 강관으로 용접조립 각형강관이 CFT 기둥으로 사용될 경우 콘크리트와 강관 폭의 중앙에 설치된 리브가 국부좌굴을 방지하는 역할을 하며 강관은 내부의 콘크리트의 구속하여 콘크리트의 구조내력을 향상시키는 역할을 한다. 본 연구에서는 용접조립 각형강관기둥의 제작방법을 소개하고 용접조립 각형강관과 용접조립 각형CFT 기둥 의 구조성능을 평가하기 위해 강관의 형상(용접조립 각형강관, 일반강관)과 폭두께비(B/t=50, 58, 67), 콘크리트의 강도(f'c=, 10MPa, 40MPa) 를 변수로 총 15개의 실대형 실험체를 제작하여 구조실험을 수행하였으며 용접조립 각형강관의 단면효율과 구조내력의 우수성을 확인하였다.

중심축하중을 받는 콘크리트충전 각형강관단주의 내력 (Strength of Axially Loaded Concrete-Filled Tubular Stub Column.)

  • 강창훈;오영석;문태섭
    • 한국강구조학회 논문집
    • /
    • 제13권3호
    • /
    • pp.279-287
    • /
    • 2001
  • 본 논문은 중심축하중을 받는 콘크리트충전 각형강관 단주의 거동에 관한 연구이다. 총 11개의 실험체가 실험되었고, 실험의 변수는 강관의 폭/두께비와 강재의 항복 응력도에 대한 콘크리트의 압축강도비(응력도비)이다. 폭/두께비의 범위는 20.22에서 91.75이고 응력도비는 0.068에서 0.0955이다. 본 실험의 변수범위를 초과하는 기존의 실험결과를 수집하고 변수의 범위를 확장하여, 각각의 변수가 미치는 영향을 고찰하였다. 또한, Hajjar가 제안한 다항식의 모델을 수정하여 콘크리트충전 각형강관 단주의 내력식을 제안하였고.

  • PDF

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도 (Strength of Square Shaped CFT Stub Column Considering the Confining Effect of Concrete)

  • 황원섭;김동조
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.813-822
    • /
    • 2002
  • 단주영역에서 정사각형 콘크리트 충전 강관기둥의 단순 누가강도, 설계식 강도는 실험강도에 비해 약간 과소하게 평가하고 있다. 따라서 본 논문은 주요 요인이 되는 콘크리트의 구속효과를 고려하여 평가하고자 하였다. 콘크리트의 구속효과를 검토하기 위해 3차원 유한요소모델을 사용하여 강관의 폭-두께비(b/t), 콘크리트의 압축강도($f_c$'), 강재의 항복응력($f_y$)에 따른 영향을 검토하였고 이 세 변수를 조합한 제안된 강도식은 기존의 실험값과 비교, 검토되었다. 또한 하중 재하상태에 따른 콘크리트의 구속효과도 살펴 보았다.