• 제목/요약/키워드: concrete-filled tubes

검색결과 179건 처리시간 0.023초

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • 제16권5호
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

프리스트레스를 받는 중공형 콘크리트 충전 강관말뚝의 휨거동 해석 (Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles)

  • 정흥진;백규호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.133-140
    • /
    • 2018
  • 본 연구에서는 중공형의 PHC말뚝과 강관말뚝을 합성한 중공형 콘크리트 충전 강관(HCFT)말뚝의 거동분석을 위한 수치해석 모델을 개발하였고 휨강도시험에 적용하여 모델의 타당성을 검증하였다. 개발된 비선형 유한요소해석 모델의 적정성을 파악하기 위해 실물 시험 결과와 비교하였고 이를 활용하여 HCFT말뚝에 적합한 접촉조건, PC강봉의 제원에 따른 효과, 콘크리트 두께에 따른 효과 등을 분석하였다. 소성응력분배법을 적용하여 HCFT말뚝의 휨강도 산정식을 제안하였고 시험 및 해석결과와 비교하여 활용성을 검증하였다. 본 연구의 결과는 HCFT말뚝의 최적설계 및 거동분석에 기초자료로 활용될 수 있을 것으로 판단된다.

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

콘크리트 충전 강관 부재의 휨거동에 관한 유한요소해석 (Finite Element Analysis of the Flexural Behavior of Concrete Filled Steel Tubes)

  • 강재윤;최은석;진원종;이정우;김병석;이흥수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.418-421
    • /
    • 2006
  • Appropriate analysis models for concrete-filled steel tube (CFT) subjected to bending moment were determined to assess flexural behavior of CFT member. Applying this model, finite element analyses was performed and compared against experimental data considering the compressive strength of in-filling material and the composite action between tube shell and in-filling core. Analysis results showed that the FE model proposed in this study is feasible for the analytical investigation of the flexural behavior of CFT member according to loading conditions, effect of compressive strength of various core materials and other design parameters.

  • PDF

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

Feasibility study for blind-bolted connections to concrete-filled circular steel tubular columns

  • Goldsworthy, H.M.;Gardner, A.P.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.463-478
    • /
    • 2006
  • The design of structural frameworks for buildings is constantly evolving and is dependent on regional issues such as loading and constructability. One of the most promising recent developments for low to medium rise construction in terms of efficiency of construction, robustness and aesthetic appearance utilises concrete-filled steel tubular sections as the columns in a moment-resisting frame. These are coupled to rigid or semi-rigid connections to composite steel-concrete beams. This paper includes the results of a pilot experimental programme leading towards the development of economical, reliable connections that are easily constructed for this type of frame. The connections must provide the requisite strength, stiffness and ductility to suit gravity loading conditions as well as gravity combined with the governing lateral wind or earthquake loading. The aim is to develop connections that are stiffer, less expensive and easier to construct than those in current use. A proposed fabricated T-stub connection is to be used to connect the beam flanges and the column. These T-stubs are connected to the column using "blind bolts" with extensions, allowing installation from the outside of the tube. In general, the use of the extensions results in a dramatic increase in the strength and stiffness of the T-stub to column connection in tension, since the load is shared between membrane action in the tube wall and the anchorage of the bolts through the extensions into the concrete.

Test of extended thick-walled through-diaphragm connection to thick-walled CFT column

  • Qin, Ying;Chen, Zhihua;Bai, Jingjing;Li, Zilin
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.1-20
    • /
    • 2016
  • The strength and stiffness of the steel beams to concrete-filled tubular columns connections are significantly reduced if the thick-walled components are used. However, the thick-walled tubes used for columns can largely reduce the demand for space and increase the strength-to-weight ratio. This paper describes the cyclic performance of extended through-diaphragm connections between steel beams and thick-walled concrete-filled tubular columns improved with fillets around the diaphragm corners. Test on one full-scale connection was conducted to assess the seismic behavior of the connection in terms of strength, stiffness, ductility, deformation, energy dissipation, and strain distribution. It is shown that the fillets and extended through-diaphragm can alleviate the stress concentration in the connection and thus improve the seismic performance. The test results demonstrate that the through-diaphragm connections with thick-walled concrete-filled tubular columns can offer sufficient energy dissipation capacity and ductility appropriate for its potential application in seismic design.

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • 국제초고층학회논문집
    • /
    • 제13권1호
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.