• Title/Summary/Keyword: concrete-filled tubes

Search Result 179, Processing Time 0.024 seconds

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

The Beam-Column Strength of Concrete Filled Tubes (콘크리트 충전 각형강관 기둥재의 최대내력)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.391-400
    • /
    • 1997
  • The objective of this paper is to suggest formula of Concrete Filled Tube Beam-Column members maximum strength by using of numerical analysis and tests. The numerical analysis results are compared with test results for evaluating numerical analysis method. The formula of Limit State Design of Architectural Institute of KOREA is used for basic form of suggestion formula. In order to suggest formula, two methods are used. One is to use the coefficient, and the other is to use the amplified factor of material strength. The formula by two methods are compared with numerical analysis results.

  • PDF

Study on rectangular concrete-filled steel tubes with unequal wall thickness

  • Zhang, Yang;Yu, Chen-Jiang;Fu, Guang-Yuan;Chen, Bing;Zhao, She-Xu;Li, Si-Ping
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1073-1084
    • /
    • 2016
  • Rectangular concrete-filled steel tubular columns with unequal wall thickness were investigated in the paper. The physical centroid, the centroidal principal axes of inertia, and the section core were given. The generalized bending formula and the generalized eccentric compression formula were deduced, and the equation of the neutral axis was also provided. The two rectangular concrete-filled steel tubular stub specimens subjected to the compression load on the physical centroid and the geometric centroid respectively were tested to verify the theoretical formulas.

The Long-term Behavior of CFT-Column (CFT 기둥의 장기거동 특성에 관한 연구)

  • 권승희;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.579-582
    • /
    • 1999
  • This paper represents the results of experiments designed to investigate the time-dependent response of concrete and steel tube in circular concrete-filled steel tubes, as are deployed extensively in high-rise building construction. The experiments were performed for creep of concrete and CFT column specimens with three loading cases. The creep coefficient and specific creep(unit creep) obtained from the test results were used for estimating and comparing the time-dependent response of each case. From these analyses, it is show that CFT-column has many merits for long-term behavior.

  • PDF

Dynamic Analysis and Safety Estimation of New Type Girder Filled by High-Strength Concrete (고강도 콘크리트를 적용시킨 신형식 거더의 동적해석 및 안정성 평가)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.213-216
    • /
    • 2008
  • CFT(Concrete Filled Steel Tubular) Structure filled steel tubes with a concrete improves the stiffness and strength of the structure by the confinement effect of fillers. CFTA(Concrete Filled and Tied Steel Tubular Arch) girder is a new type structure that applies an arch structure and a pre-stressed structure to CFT Structure to maximize the efficiency of structure and economic. One of conspicuous characteristics of CFTA girder is exposed tendon and that is pointed out as the weak point of this girder. Therefore in this study, safety estimation for the exposed tendon is performed and dynamic analysis is also performed by the collision numerical simulation. For analyzing this model, ABAQUS 6.5-1 was used.

  • PDF

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.