• 제목/요약/키워드: concrete-filled steel tubular columns

검색결과 178건 처리시간 0.02초

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

Experimental study on reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.517-533
    • /
    • 2014
  • Experimental results of 39 specimens including concrete columns, RC columns, hollow steel tube columns, concrete filled steel tubular (CFT) columns, and reinforced concrete filled steel tubular (RCFT) columns are presented. Based on the experimental results, the load-carrying capacity, confined effect, ductility, and failure mode of test columns are investigated. The effects of the main factors such as width-thickness ratio (the ratio of external diameter and wall thickness for steel tubes), concrete strength, steel tube with or without rib, and arrangement of reinforcing bars on the mechanical characteristics of columns are discussed as well. The differences between CFT and RCFT are compared. As a result, it is thought that strength, rigidity and ductility of RCFT are improved; especially strength and ductility are improved after the peak of load-displacement curve.

Experimental study on partially concrete-filled steel tubular columns

  • Ishizawa, T.;Nakano, T.;Iura, M.
    • Steel and Composite Structures
    • /
    • 제6권1호
    • /
    • pp.55-69
    • /
    • 2006
  • The results of tests conducted on 11 concrete-filled steel tubular columns were reported. Concrete was partially filled in circular steel tubular columns. The primary test parameters were radius and thickness of steel tubes, concrete height, loading patterns and attachment of diaphragm and studs. Concrete strain was measured directly by embedding strain gauges so that the effect of diaphragm on concrete confinement could be investigated. The effects of concrete height and diaphragm on ultimate strength and ductility of steel tubes were investigated. The comparisons of the test results with the existing results for rectangular cross-sections were made on the basis of ultimate strength and ductility of concrete-filled steel tubular columns.

Failure of lightweight aggregate concrete-filled steel tubular columns

  • Ghannam, Shehdeh;Jawad, Yahia Abdel;Hunaiti, Yasser
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Tests on steel tubular columns of square, rectangular and circular section filled with normal and lightweight aggregate concrete were conducted to investigate the failure modes of such composite columns. Thirty-six full scale columns filled with lightweight and normal weight aggregate concrete, eighteen specimens for each, were tested under axial loads. Nine hollow steel sections of similar specimens were also tested and results were compared to those of filled sections. The test results were illustrated by a number of load-deflection and axial deformation curves. The results showed that both types of filled columns failed due to overall buckling, while hollow steel columns failed due to bulging at their ends (local buckling). According to the above-mentioned results, and due to low specific gravity and thermal conductivity of the lightweight concrete the further interest should be concentrated in replacing the normal concrete by the lightweight aggregate concrete.

중심축압(中心軸壓)을 받는 콘크리트충전(充塡) 각형강관(角形鋼管)기둥의 내력(耐力)에 관한 실험적(實驗的) 연구(硏究) (Experimental Study on Compressive Strength of Centrally Loaded Concrete Filled Square Tubular Steel Columns)

  • 김종성;오윤태;권영환
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.59-76
    • /
    • 1996
  • Concrete filled steel tube column has a large load carrying capacity through its steel and concrete interaction which makes it useful in construction. However, it has not been used often in a practical construction field. This is partly due to the non-destructive inspection method for concrete filling which has yet to be established. Furthermore, there are the lack of test data and a practical method in evaluating the ultimate load carrying capacity of concrete filled steel tube column. This paper will attempt to predict the ultimate strength of short concrete filled square tubular steel columns through conducting several tests. To accumulate the new test data on concrete filled steel tube columns, a total of 42 specimens of steel tubular columns were monotonically tested under concentric axial force, having the slenderness ratio(${\lambda}=10,\;15,\;20$), width-thickness ratio(d/t=25.0, 33.3) and concrete strengths($F_{c}=210,\;240,\;270kg/cm^{2}$). The hollow sections and concrete filled steel columns were compared to check the lateral confinded effects by steel tube. Through these test results, we propose a coefficient k=3.64 for the strength evaluation formula(10) of concrte filled tubular steel short columns.

  • PDF

Analytical study of concrete-filled steel tubular stub columns with double inner steel tubes

  • Pouria Ayough;Yu-Hang Wang;Zainah Ibrahim
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.645-661
    • /
    • 2023
  • Concrete-filled steel tubular columns with double inner steel tubes (CFST-DIST) are a novel type of composite members developed from conventional concrete-filled steel tubular (CFST) columns. This paper investigates the structural performance of circular CFST-DIST stub columns using nonlinear finite element (FE) analysis. A numerical model was developed and verified against existing experimental test results. The validated model was then used to compare circular CFST-DIST stub columns' behavior with their concrete-filled double skin steel tubular (CFDST) and CFST counterparts. A parametric study was performed to ascertain the effects of geometric and material properties on the axial performance of CFST-DISTs. The FE results and the available test data were used to assess the accuracy of the European and American design regulations in predicting the axial compressive capacity of circular CFST-DIST stub columns. Finally, a new design model was recommended for estimating the compressive capacity of CFST-DISTs. Results clarified that circular CFST-DIST columns had the advantages of their CFST counterparts but with better ductility and strength-to-weight ratio. Besides, the investigated design codes led to conservative predictions of the compressive capacity of circular CFST-DIST columns.

Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading

  • Wan, Cheng-Yong;Zha, Xiao-Xiong
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.571-597
    • /
    • 2016
  • A new unified design formula for calculating the composite compressive strength of the axially loaded circular concrete filled double steel tubular (CFDST) short and slender columns is presented in this paper. The formula is obtained from the analytic solution by using the limit equilibrium theory, the cylinder theory and the "Unified theory" under axial compression. Furthermore, the stability factor of CFDST slender columns is derived on the basis of the Perry-Robertson formula. This paper also reports the results of experiments and finite element analysis carried out on concrete filled double steel tubular columns, where the tested specimens include short and slender columns with different steel ratio and yield strength of inner tube; a new constitutive model for the concrete confined by both the outer and inner steel tube is proposed and incorporated in the finite element model developed. The comparisons among the finite element results, experimental results, and theoretical predictions show a good agreement in predicting the behavior and strength of the concrete filled steel tubular (CFST) columns with or without inner steel tubes. An important characteristic of the new formulas is that they provide a unified formulation for both the plain CFST and CFDST columns relating to the compressive strength or the stability bearing capacity and a set of design parameters.

콘크리트 충전 각형강관 기둥의 내력 평가 (Strength of Concrete-Filled Rectangular Steel Tubular Columns)

  • 유영찬;문태섭
    • 한국강구조학회 논문집
    • /
    • 제11권1호통권38호
    • /
    • pp.89-98
    • /
    • 1999
  • 본 연구는 콘크리트충전 각형강관 기둥의 중심 및 편심압축 실험을 통해 비탄성역에서의 좌굴내력을 구하고, 그 결과를 비교 분석하여 기둥의 각 변수에 따른 내력 및 변형능력에 미치는 영향을 종합적으로 파악하며, 각국의 규준식과 비교하여 새로운 내력식을 제안하여 콘크리트충전 각형강관 기둥을 이용한 고층구조시스템의 개발에 필요한 구조역학적 정보를 제공하고, 향후 국내의 콘크리트충전 강관구조 규준 제정에 필요한 기초 자료를 제시하는데 그 목적이 있다.

  • PDF

Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns

  • Pons, David;Espinos, Ana;Albero, Vicente;Romero, Manuel L.
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.705-717
    • /
    • 2018
  • This paper presents a numerical investigation on the mechanical performance of concrete-filled dual steel tubular columns of circular section subjected to concentric axial load. A three-dimensional numerical model is developed and validated against a series of experimental tests. A good agreement is obtained between the experimental and numerical results, both in the peak load value and in the ascending and descending branches of the load-displacement curves. By means of the numerical model, a parametric study is carried out to investigate the influence of the main parameters that determine the axial capacity of double-tube columns, such as the member slenderness, inner and outer steel tube thicknesses and the concrete grade - of both the outer concrete ring and inner core -, including ultra-high strength concrete. A total number of 163 numerical simulations are carried out, by combining the different parameters. Specific indexes are defined (Strength Index, Concrete-Steel Contribution Ratio, Inner Concrete Contribution Ratio) to help rating the relative mechanical performance of dual steel tubular columns as compared to conventional concrete-filled steel tubular columns, and practical design recommendations are subsequently given.

Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.243-253
    • /
    • 2018
  • In recent years, concrete-filled box or tubular columns have been commonly used in high-rise buildings. However, a number of fire test results show that there are significant differences between high strength concrete (HSC) and normal strength concrete (NSC) after being subjected to high temperatures. Therefore, this paper presents an investigation on the fire resistance of HSC filled steel tubular columns (CFTCs) under combined temperature and loading. Two groups of full-size specimens were fabricated to consider the effect of type of concrete infilling (plain and reinforced) and the load level on the fire resistance of CFTCs. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The results demonstrate that the higher the axial load level, the worse the fire resistance. Moreover, in the bar-reinforced concrete-filled steel tubular columns, the presence of rebars not only decreased the spread of cracks and the sudden loss of strength, but also contributed to the load-carrying capacity of the concrete core.