• 제목/요약/키워드: concrete-filled square stainless steel tubes

검색결과 2건 처리시간 0.013초

A numerical study on shear response of concrete-filled stainless steel tubes

  • Sina Kazemzadeh Azad;Brian Uy
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.507-530
    • /
    • 2023
  • The number of studies investigating the response of concrete-filled tubes (CFTs) under shear has been very limited in the literature. This lack of research has been traditionally reflected in international design standards as rather conservative shear strength predictions for CFTs. The dearth of research on the shear response is even more pronounced for the case of concrete-filled stainless steel tubes (CFSSTs). In line with this, the present study investigates the shear response of circular and square CFSSTs using advanced finite element (FE) analysis. A thorough review of the previous studies on the shear response of carbon steel CFTs is provided along with a summary of past experimental programmes as well as the developed and codified design methods. A comprehensive numerical study is then conducted considering a wide range of circular and square, austenitic and lean duplex CFSSTs with different concrete infills and shear span-to-depth ratios. The effect of the tail length on the shear response is investigated and the minimum required tail length for achieving full shear capacity is established. The simulations are also used to highlight the importance of the dilation of the concrete core in the shear response of concrete-filled tubes and its relationship with the utilised boundary conditions. Furthermore, the numerical results are compared in detail with the predictions of design approaches developed previously for carbon steel CFTs and their accuracy and applicability to the stainless steel counterpart are demonstrated and recommendations are made accordingly.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.