• Title/Summary/Keyword: concrete-filled composite columns

Search Result 283, Processing Time 0.022 seconds

Experimental Study on Slenderness Effects in Concrete-Filled Glass Fiber Reinforced Polymer Composite Columns (콘크리트 충전 유리섬유 복합소재 기둥의 세장비 특성에 관한 실험적 연구)

  • Choi, Sok-Hwan;Lee, Sung-Woo;Sohn, Ki-Hoon;Lee, Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.585-590
    • /
    • 2001
  • The structural characteristics of concrete-filled glass fiber reinforced polymer tubes were studied. The concept of concrete-filled composite columns was introduced to overcome the corrosion problems associated with steel and concrete piles under severe environments. Other benefits of composite columns include low maintenance cost, high earthquake resistance, and long expected endurance period. Several experiments were conducted; 1) compression test for short-length composite columns, 2) uniaxial compression tests on a total of 7 columns with various slenderness ratios. Short-length columns give higher strength and ductility revealing high confinement action in concrete. Failure strengths, failure patterns, confinement effects, and stress-strains relations were analyzed for slender columns. Current study will show the feasibility of concrete-filled glass fiber reinforced polymer composite columns in corrosive environments, and will provide an experimental database for columns that are externally reinforced by multidirectional fibers.

  • PDF

A Study on the Ductility of Concrete-Filled Composite Columns under Cyclic Loading (반복하중을 받는 콘크리트충전 강합성 기둥의 연성에 관한 연구)

  • 송준엽;권영봉;김성곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.11-19
    • /
    • 2001
  • A series of test on concrete-filled composite columns was preformed to evaluate structural performance under axial compression and cyclic lateral loading. It was presented that concrete-filled composite columns had high strength, high stiffness and large energy-absorption capacity on account of mutual confinement between the steel plate and filled-in concrete. A cross section analysis procedure developed to predict the moment-curvature relation of composite columns was proven to be on accurate and effective method. The ductility factor and the response modification factor were evaluated for the seismic design of concrete-filled composite columns. It was shown that concrete-filled composite columns could be used as a very efficient earthquake-resistant structural member.

  • PDF

Failure of lightweight aggregate concrete-filled steel tubular columns

  • Ghannam, Shehdeh;Jawad, Yahia Abdel;Hunaiti, Yasser
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Tests on steel tubular columns of square, rectangular and circular section filled with normal and lightweight aggregate concrete were conducted to investigate the failure modes of such composite columns. Thirty-six full scale columns filled with lightweight and normal weight aggregate concrete, eighteen specimens for each, were tested under axial loads. Nine hollow steel sections of similar specimens were also tested and results were compared to those of filled sections. The test results were illustrated by a number of load-deflection and axial deformation curves. The results showed that both types of filled columns failed due to overall buckling, while hollow steel columns failed due to bulging at their ends (local buckling). According to the above-mentioned results, and due to low specific gravity and thermal conductivity of the lightweight concrete the further interest should be concentrated in replacing the normal concrete by the lightweight aggregate concrete.

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • Choi Sokhwan;Lee Myung;Lee Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.

Experimental study on partially concrete-filled steel tubular columns

  • Ishizawa, T.;Nakano, T.;Iura, M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.55-69
    • /
    • 2006
  • The results of tests conducted on 11 concrete-filled steel tubular columns were reported. Concrete was partially filled in circular steel tubular columns. The primary test parameters were radius and thickness of steel tubes, concrete height, loading patterns and attachment of diaphragm and studs. Concrete strain was measured directly by embedding strain gauges so that the effect of diaphragm on concrete confinement could be investigated. The effects of concrete height and diaphragm on ultimate strength and ductility of steel tubes were investigated. The comparisons of the test results with the existing results for rectangular cross-sections were made on the basis of ultimate strength and ductility of concrete-filled steel tubular columns.

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.