• Title/Summary/Keyword: concrete track

Search Result 393, Processing Time 0.027 seconds

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.

The Effect of Pile Distallation on the Reduction of Cumulative Plastic Settlement (말뚝 설치를 통한 콘크리트궤도의 누적소성침하 감소 효과)

  • Lee, Su-Hyung;Lee, Il-Wha;Lee, Sung-Jin;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.129-137
    • /
    • 2008
  • An active application of concrete track is being expected far the future constructions of Korean railroad. In comparison with the existing ballasted tract, a concrete track is very susceptible for the settlement, since its rehabilitation requires much time and cost. When a concrete track is constructed on fine-grained subgrade soil, excessive cumulative plastic settlements due to repetitive train road may occur. In this case, the settlement of the concrete track may be effectively reduced by installing a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of cumulative plastic settlement of concrete track. A method combining experiential equation and numerical method is proposed. Using an existing experiential equation and the estimated earth pressure distribution, the cumulative plastic strain was calculated. From the results, it is verified that the effects of the pile installation is significant to effectively reduce the cumulative plastic settlement of concrete track. The reduction effects of the cumulative plastic settlement according to the pile number and pile arrangement are presented.

Experimental Study on Characteristics of Deformation for Concrete Track on Railway Bridge Deck End induced by Bridge End Rotation (철도교량 단부 회전에 따른 콘크리트 궤도의 변형특성에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • In this study, by considering the rail fastening support distance and the distance between the bridge and the abutment, the behavior of concrete track installed on a railway bridge end deck and the bridge end rotation were analyzed. In order to analyze the track-bridge interaction, bridge and abutment specimens with concrete track structures were designed and used in laboratory testing. At a constant fastening support distance, an increase in the bridge end rotation caused an increase in the displacement of the rail. Therefore, the displacement of the rail directly affects the rail and clip stress. Further, it is inferred that the results of multiple regression analysis obtained using measured data such as angle of bridge end rotation and fastening support distance can be used to predict the track-bridge interaction forces acting on concrete track installed on railway bridge deck ends.

Damage Cause Analysis of Concrete Sleepers for Sharp Curved Track on Urban Railway Bridge (도시철도 교량상 급곡선 자갈궤도용 콘크리트침목 손상원인 분석)

  • Choi, Jung-Youl;Shin, Tae-Hyoung;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.517-522
    • /
    • 2021
  • In this study, the causes of damage to the concrete sleepers in a ballast track with under sleeper pads attached to the base of the sleepers installed in the sharp curved track(R=180m) of the urban railway bridge were analyzed. The damage types of concrete sleepers were investigated, and the correlation with track irregularity was reviewed. Also, stress generated in the concrete sleeper was reviewed through structural analysis. As a result, most of the cracks of the sleepers occurred in the section with severe track irregularity. In addition, as a result of the analysis, the stress generated in the track components and the sleepers was found to be reduce in the fastening system using the 4-anchor.

Embedded Rail Track on the LRT(Tram) (레일 매립궤도의 특성과 노면철도에 적용 가능성에 관한 연구)

  • Lee Ki-Seung;Kim Sung-Chil;Beak Jin-Ki;Go Dong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • Embedded rail track can be described as a track structure that is completely covered within pavement. Rail supported continually on a concrete slab or concrete plinth. There are many kinds of types such as non-resilient track and resilient track, super resilient embedded track (floating slab). Embedded rail track is generally the standard for light rail transit routes because this track has many advantages such as reducing noise, maintenance cost and weight of track. In this paper, decision of track profile is restricted by the optimum levels of the flangeway and the gap between the rail head and the pavement surface of depressing tread zone. By result of this study, embedded rail track can reduce corrosion of rail, internal stress and rail deflection.

  • PDF

A Study on the Criteria of Settlement in Concrete Slabtrack (토노반상 콘크리트궤도의 노반허용침하기준설정에 관한 연구)

  • Hong, Chul-Kee;Yang, Shin-Chu;Kim, Yun-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.355-364
    • /
    • 2007
  • Recently a concrete slab tracks are being constructed on roadbed in the Gyoeng-bu 2nd phase high speed railways. In respdnding to this trend, new design standards and track materials maintenance systems, based on the slab track material safety and usage perspective, are needed. This research provides a roadbed design criteria and the maintenance system. The proposed roadbed design criteria and the maintenance system are based on the developed analysis meathod of train/slab-track interaction. where the roadbed settlement and train speed are utilized as mediating variables. In the analysis, the dynamic response of train/slab-track interaction apply to various speeds and settlements. the roadbed settlement is shown in a sinusoidal shape of wave, the scope of the settlement occurrence presented in its wavelengths, include 6meters, 10meters, 15merwes, 20meters, 30meters. The train speeds involved are 50, 100, 150, 200, 250, 300, 350, 400kilometers per hour.

Characteristics of GHG Emission by Use of Equipments under Track Construction (궤도건설시 장비사용에 따른 온실가스 배출 특성)

  • Jung, Woo-Sung;Lee, Jae-Young;Kim, Jong-Su;Park, Sang-Gu;Hwang, In-Hwan;Lee, Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2563-2566
    • /
    • 2011
  • Government has presented a guideline for the calculation of carbon emission with infrastructures in 2011, which aims to manage the GHG(greenhouse gas) emission of construction sector. Generally, the main emission sources of construction works are divided into the fuel consumption of equipments and the use of materials. This study investigated the characteristics of GHG emission with the use of equipments under the construction of railroad track. Track types are classified into ballasted track and concrete track. As a result, the specific GHG emission on the construction of ballasted track at the A line was 39.53 ton $CO_{2e}/km$ and concrete track was 25.54 ton $CO_{2e}/km$. Ballasted track showed higher specific GHG emission than concrete track because of the additional construction works by the use of gravels. In future, it is necessary to study the comparison of GHG emissions with construction methods including the use of materials. Based on these results, the low carbon construction of railroad will be established continuously.

  • PDF

Experimental Investigation on Fatigue Behavior of Concrete Slab Tracks under Railway Loads (철도하중에 대한 콘크리트 슬래브궤도의 피로거동에 관한 실험적 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.639-642
    • /
    • 2003
  • In this paper, fatigue behavior of concrete slab tracks under railway loads by experimental method is discussed. The addition of steel fibers to concrete mix has been receiving more attention as a way of improving the crack behavior of concrete beams an slabs tacks. This study two objectives: 1) to observe the fatigue behavior of fiber reinforced concrete slab in labor, and 2) to present crack propagation and deflection of fiber reinforced concrete slab track under railway loads in the Waghauser test line. Nine beams, two slabs and one test track were experimentally tested.

  • PDF

The Performance Evaluation of Newly Developed Concrete Slab Track (개발형 콘크리트 슬래브궤도의 성능평가)

  • Kang Yun Suk;Kim Eun;Lee Il Hwa;Yang Sin Chu
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.151-156
    • /
    • 2003
  • The purpose of this study is to establish the test procedure of concrete slab track and to estimate the performance of newly developed slab track. The basic direction of conceptual design of KRRI Slab track was determined in the viewpoint of running safety, economic efficiency and maintenance costs. Based on the research results, a detailed conceptual design of KRRI slab track is suggested. For the systematic development of slab track, a comparative study is carried out, comparing merits and demerits of each slab type, and used in the design process of slab track. Slab track tests were performed at lab and the slab track system was improved by the experiment result. Site Test also were performed in test slab track.

  • PDF

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.