• Title/Summary/Keyword: concrete technology

Search Result 4,584, Processing Time 0.026 seconds

Stress-strain relationship for recycled aggregate concrete after exposure to elevated temperatures

  • Liang, Jiong-Feng;Yang, Ze-Ping;Yi, Ping-Hua;Wang, Jian-Bao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.609-615
    • /
    • 2017
  • In this paper, the effects of elevated temperatures on the strength and compressive stress-strain curve (SSC) of recycled coarse aggregate concrete with different replacement percentages are presented. 90 recycled coarse aggregate concrete prisms are heated up to 20, 200, 400, 600, $800^{\circ}C$. The results show that the compressive strength, split tensile strength, elastic modulus of recycled aggregate concrete specimens decline significantly as the temperature rise. While the peak strain increase of recycled aggregate concrete specimens as the temperature rise. Compared to the experimental curves, the proposed stress-strain relations for recycled aggregate concrete after exposure elevated temperatures can be used in practical engineering applications.

Development of Casting Technology for Freeform Concrete Segments (비정형 콘크리트 부재 생산을 위한 주조기술 개발)

  • Kim, Gyeongju;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.66-67
    • /
    • 2014
  • Design and construction of freeform building technologies are being implemented to reduce time and cost due to the development of materials and equipments. However, production of freeform concrete segments takes much more time and manpower than typical due to disposable mold and various shape. Therefore, manufacturing technology of freeform concrete segments need to be developed for securing economic and constructive feasibility. The objective of this study is development of efficient casting technology for freeform concrete segments in a short time. This technology includes details about the fluidity of concrete and the sectional shape of freeform concrete segments. And problem of cost and time can be solved. Also, mold can be reusable and freeform concrete segments will be produced quickly and accurately. After this study, productivity study for validation will continue through prototype development and example application.

  • PDF

Cyclic performance of concrete beams reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Deng, Yu;Hu, Minghua;Tang, Dilian
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • This paper describes an experimental study of the cyclic performance of concrete beams reinforced with CFRP prestressed concrete prisms (PCP). The failure modes, hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation of concrete beams reinforced with CFRP prestressed concrete prisms were analyzed. The results show that The CFRP prestressed prisms reinforced concrete beams have good seismic performance. The level of effective prestress and cross section of CFRP prestressed prisms had a little influence on the bearing capacity, the ductility and energy dissipation capacity of CFRP prestressed prisms reinforced concrete beams.

An approach of using ideal gradating curve and coating paste thickness to design concrete performance-(2) Experimental work

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.35-47
    • /
    • 2012
  • The ideal gradating curve is used in this study to estimate densified aggregate blended ratio and total surface area of aggregate, there by under assigned paste amount of concrete, and coating paste thickness can then be deduced. Four groups of concrete mixtures were prepared and the corresponding concrete properties, such as workability, compression strength, ultrasonic velocity, surface resistivity and chloride ion penetration, were measured and finally the results are interpreted in terms of "coating thickness". The result shows as the coating thickness of the concrete is higher than critical one, the coating thickness on aggregate does affect the workability, and whatever workability is required the superplasticizer can be adjusted to achieve the demand workability. Under a fixed paste quality at the same age, coating paste thickness is inversely proportional to the concrete properties, especially as the coating thickness gets thinner.

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck (GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자)

  • Cho, Jeong-Rae;Park, Young Hwan;Park, Sung Yong;Cho, Kunhee;Kim, Sung Tae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.

Remote sensing and photogrammetry techniques in diagnostics of concrete structures

  • Janowski, Artur;Nagrodzka-Godycka, Krystyna;Szulwic, Jakub;Ziolkowski, Patryk
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.405-420
    • /
    • 2016
  • Recently laser scanning technologies become widely used in many areas of the modern economy. In the following paper authors show a potential spectrum of use Terrestrial Laser Scanning (TLS) in diagnostics of reinforced concrete elements. Based on modes of failure analysis of reinforcement concrete beam authors describe downsides and advantages of adaptation of terrestrial laser scanning to this purpose, moreover reveal under which condition this technology might be used. Research studies were conducted by Faculty of Civil and Environmental Engineering at Gdansk University of Technology. An experiment involved bending of reinforced concrete beam, the process was registered by the terrestrial laser scanner. Reinforced concrete beam was deliberately overloaded and eventually failed by shear. Whole failure process was tracing and recording by scanner Leica ScanStation C10 and verified by synchronous photographic registration supported by digital photogrammetry methods. Obtained data were post-processed in Leica Cyclone (dedicated software) and MeshLab (program on GPL license). The main goal of this paper is to prove the effectiveness of TLS in diagnostics of reinforced concrete elements. Authors propose few methods and procedures to virtually reconstruct failure process, measure geometry and assess a condition of structure.

Influence of Iranian low-reactivity GGBFS on the properties of mortars and concretes by Taguchi method

  • Ramezanianpour, A.A.;Kazemian, A.;Radaei, E.;AzariJafari, H.;Moghaddam, M.A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.423-436
    • /
    • 2014
  • Ground Granulated Blast Furnace Slag (GGBFS) is widely used as an effective partial cement replacement material. GGBFS inclusion has already been proven to improve several performance characteristics of concrete. GGBFS provides enhanced durability, including high resistance to chloride penetration and protection against alkali silica reaction. In this paper results of an experimental research work on influence of low-reactivity GGBFS (which is largely available in Iran) on the properties of mortars and concretes are reported. In the first stage, influence of GGBFS replacement level and fineness on the compressive strength of mortars was investigated using Taguchi method. The analysis of mean (ANOM) statistical approach was also adopted to develop the optimal conditions. Next, based on the obtained results, concrete mixtures were designed and water penetration, capillary absorption, surface resistivity, and compressive strength tests were carried out on highstrength concrete specimens at different ages up to 90 days. The results indicated that 7-day compressive strength is adversely affected by GGBFS inclusion, while the negative effect is less evident at later ages. Also, it was inferred that use of low-reactivity GGBFS (at moderate levels such as 20% and 30%) can enhance the impermeability of high-strength concrete since 28 days age.

Concrete-steel bond-slip behavior of recycled concrete: Experimental investigation

  • Ren, Rui;Qi, Liangjie;Xue, Jianyang;Zhang, Xin;Ma, Hui;Liu, Xiguang;Ozbakkaloglu, Togay
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.241-255
    • /
    • 2021
  • In order to study the interfacial bond-slip behavior of steel reinforced recycled concrete (SRRC) under cyclic loading, thirteen specimens were designed and tested under cyclic loading and one under monotonic loading. The test results indicated that the average bond strength of SRRC decreased with the increasing replacement ratio of recycled concrete, whereas the bond strength increased with an increase in the concrete cover thickness, the volumetric stirrup ratio, and the strength of recycled concrete. The ultimate bond strength of the cyclically-loaded specimen was significantly (41%) lower than that of the companion monotonically-loaded specimen. The cyclic phenomena also showed that SRRC specimens went through the nonslip phase, initial slip phase, failure phase, bond strength degradation phase and residual phase, with all specimens exhibiting basically the same shape of the bond-slip curve. Additionally, the paper presents the equations that were developed to calculate the characteristic bond strength of SRRC, which were verified based on experimental results.