• 제목/요약/키워드: concrete systems

검색결과 1,529건 처리시간 0.023초

Strategies for finding the adequate air void threshold value in computer assisted determination of air void characteristics in hardened concrete

  • Duh, David;Zarnic, Roko;Bokan-Bosiljkov, Violeta
    • Computers and Concrete
    • /
    • 제5권2호
    • /
    • pp.101-116
    • /
    • 2008
  • The microscopic determination of air void characteristics in hardened concrete, defined in EN 480-11 as the linear-traverse method, is an extremely time-consuming and tedious task. Over past decades, several researchers have proposed relatively expensive mechanical automated systems which could replace the human operator in this procedure. Recently, the appearance of new high-resolution flatbed scanners has made it possible for the procedure to be automated in a fully-computerized and thus cost-effective way. The results of our work indicate the high sensitivity of such image analysis automated systems firstly to the quality of sample surface preparation, secondly to the selection of the air void threshold value, and finally to the selection of the probe system. However, it can be concluded that in case of careful validation and the use of the approach which is proposed in the paper, such automated systems can give very good estimate of the air void system parameters, defined in EN 480-11. The amount of time saved by using such a procedure is immense, and there is also the possibility of using alternative stereological methods to assess other, perhaps also important, characteristics of air void system in hardened concrete.

Optimum seismic design of unbonded post-tensioned precast concrete walls using ANN

  • Abdalla, Jamal A.;Saqan, Elias I.;Hawileh, Rami A.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.547-567
    • /
    • 2014
  • Precast Seismic Structural Systems (PRESSS) provided an iterative procedure for obtaining optimum design of unbonded post-tensioned coupled precast concrete wall systems. Although PRESSS procedure is effective, however, it is lengthy and laborious. The purpose of this research is to employ Artificial Neural Network (ANN) to predict the optimum design parameters for such wall systems while avoiding the demanding iterative process. The developed ANN model is very accurate in predicting the nondimensional optimum design parameters related to post-tensioning reinforcement area, yield force of shear connectors and ratio of moment resisted by shear connectors to the design moment. The Mean Absolute Percent Error (MAPE) for the test data for these design parameters is around %1 and the correlation coefficient is almost equal to 1.0. The developed ANN model is then used to study the effect of different design parameters on wall behavior. It is observed that the design moment and the concrete strength have the most influence on the wall behavior as compared to other parameters. Several design examples were presented to demonstrate the accuracy and effectiveness of the ANN model.

물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템: II. 실험 및 해석 (Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: II. Experiments and Analyses)

  • 김태훈;김호영;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.9-18
    • /
    • 2014
  • The purpose of this study is to investigate the seismic behavior of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and to provide the details and reference data. Five hollow reinforced concrete bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The adopted numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several the investigated test specimens. This study documents the testing of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

콘크리트 넓은 보의 상태평가를 위한 초음파 속도의 통계학적 분포에 대한 연구 (A Study on the Statistical Distribution of Ultrasonic Velocities for the Condition Evaluation of Concrete Wide Beam)

  • 윤영근;이인복;사민형;오태근
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.98-104
    • /
    • 2017
  • The ultrasonic pulse velocities of pressure, shear, and Rayleigh waves ( P-, S-, and R- waves) have been used for the condition evaluation of various concrete structures, but the statistical distribution according to the wave type has not been studied clearly in view of data reliability and validity. Therefore, this study analyzed the statistical distribution of P-, S-, R-wave velocities in concrete wide beams of $800{\times}3100mm$ (width ${\times}$ length) with a thickness of 300 mm. In addition, we investigated an experimental consistency by the Kolmogorov-Smirnov goodness-of-fit test. The experimental data showed that the R-, S- and P- wave velocities in order have better statistical stability and reliability for in situ evaluation because R- and S-waves are less sensitive to confinement and boundary conditions. Also, good correlations between wave velocities and strength and modulus of elasticity were found, which indicate them as appropriate techniques for estimating the mechanical properties.

Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall

  • Ghods, Saeedeh;Kheyroddin, Ali;Nazeryan, Meissam;Mirtaheri, Seyed Masoud;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.915-935
    • /
    • 2016
  • Steel systems composed of Reinforced Concrete column to Steel beam connection (RCS) have been raised as a structural system in the past few years. The optimized combination of steel-concrete structural elements has the advantages of both systems. Through beam and through column connections are two main categories in RCS systems. This study includes finite-element analyses of mentioned connection to investigate the seismic performance of RCS connections. The finite element model using ABAQUS software has been verified with experimental results of a through beam type connection tested in Taiwan in 2005. According to verified finite element model a parametric study has been carried out on five RCS frames with different types of lateral restraint system. The main objective of this study is to investigate the forming of plastic hinges, distribution of stresses, ductility and stiffness of these models. The results of current research showed good performance of composite systems including concrete column-steel beam in combination with steel shear wall and bracing system, are very desirable. The results show that the linear stiffness of models with X bracing and steel shear wall increase remarkably and their ultimate strength increase about three times rather than other RCS frames.

현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구 (A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building)

  • 황석호;남유진
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

비말대 거치 철근콘크리트 시험체의 철근부식에 관한 연구 (Experimental Research for Steel Corrosion of Reinforced Concrete Specimens in the Splash Zone)

  • 이상국;류금성;정영수;유환구;김국환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.821-826
    • /
    • 2000
  • Reinforced concrete is in general known as high durability construction material under normal environments due to strong alkalinity of cement. Marine concrete specimens in the tidal and the splash zone at seashore have been exposed to cyclic wet and dry saltwaters which cause to accelerate corrosion of reinforcing steel in concrete. If corrosion resistance of concrete gets to weaken de to carbonations and cracks in cover concrete, furthermore, concrete durability rapidly decreases by the corrosion of reinforcement steel embeded in concrete. The objective of this study is to develop appropriate corrosion protection systems of marine concrete so as to enhance the durability of concrete by establishing pertinent cover depth of concrete and by using corrosion inhibitors as concrete admixtures.

  • PDF