• Title/Summary/Keyword: concrete systems

Search Result 1,529, Processing Time 0.034 seconds

Proposal of Matrix Spacing Factor for Analyzing Air Void System in Hardened Concrete (콘크리트 내부공극 분석을 위한 행렬간격계수 모델식의 제안)

  • Jeong Won-Kyong;Jun In-Koo;Kim Yong-Kon;Lee Bong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.679-682
    • /
    • 2004
  • Air void systems in hardened concrete has an important influence on concrete durability such as freeze-thaw resistance, water permeability, surface scaling resistance. Linear traverse method and point count method described at ASTM is the routine analysis of the air void system that have been widely used to estimate the spacing factor in hardened concrete. Recently, many concretes often have a spacing factor higher than the generally accepted $200-250{\mu}m$ limit for the usual range of air contents. This study is proposed to estimate the matrix spacing factor by calculation of simplicity. The matrix spacing factor needs two parameters that are air content and numbers of air voids in the hardened concrete. Those are obtained from the standard air-void system analysis of the ASTM C 457. The equation is valid for all values of paste-to-air ratio because the estimation of paste content is unnecessary at the using ASTM C 457. The matrix spacing factor yields a similar estimate of the standard spacing factor.

  • PDF

Mesoscopic analysis of reinforced concrete beams

  • Tintu Shine, A.L.;Fincy, Babu;Dhileep, M.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.289-298
    • /
    • 2019
  • Reinforced concrete can be considered as a heterogeneous material consisting of coarse aggregate, mortar mix and reinforcing bars. This paper presents a two-dimensional mesoscopic analysis of reinforced concrete beams using a simple two-phase mesoscopic model for concrete. The two phases of concrete, coarse aggregate and mortar mix are bonded together with reinforcement bars so that inter force transfer will occur through the material surfaces. Monte Carlo's method is used to generate the random aggregate structure using the constitutive model at mesoscale. The generated models have meshed such that there is no material discontinuity within the elements. The proposed model simulates the load-deflection behavior, crack pattern and ultimate load of reinforced concrete beams reasonably well.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.761-777
    • /
    • 2021
  • This study presents a numerical investigation on the sensitivity of electromechanical (EM) impedance responses to inner damaged concrete of a prestressed anchorage zone. Firstly, the Ottosen yield criterion is selected to simulate the plasticity behavior of the concrete anchorage zone under the compressive loading. Secondly, several overloading cases are selected to analyze inner damage formations in the concrete of the anchorage zone. Using a finite element (FE) model of the anchorage zone, the relationship between applied forces and stresses is analyzed to illustrate inner plasticity regions in concrete induced by the overloading. Thirdly, EM impedance responses of surface-mounted PZT (lead-zirconate-titanate) sensors are numerically acquired before and after concrete damage occurrence in the anchorage zone. The variation of impedance responses is estimated using the RMSD (root-mean-square-deviation) damage metric to quantify the sensitivity of the signals to inner damaged concrete. Lastly, a novel PZT skin, which can measure impedance signatures in predetermined frequency ranges, is designed for the anchorage zone to sensitively monitor the EM impedance signals of the inner damaged concrete. The feasibility of the proposed method is numerically evaluated for a series of damage cases of the anchorage zone. The results reveal that the proposed impedance-based method is promising for monitoring inner damaged concrete in anchorage zones.

Dry Connections for Precast Shear Wall Systems (프리캐스트 전단벽 시스템의 건식접합부에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC walls require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Seismic Response Characteristics of Low-Rise R/C Buildings (저층 철근콘크리트 건물의 지진응답특성)

  • Lee Kang Seok;Oh Jae-Keun;Choi Chang Sik;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.223-226
    • /
    • 2005
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise R/C buildings combined with extremely brittle, shear and flexural failure systems have influence on seismic capacities of the overall system, which is based on seismic response analysis of SDOF structural systems. To simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to two ground motion components. By analyzing these systems, interaction curves of required strengths of the triple systems for various levels of ductility factors are finally derived for practical purposes.

  • PDF

Structural Behavior of Concrete Girder Continuous Bridges Strengthened with External Tendons Considering the Efficiency at Negative Moment Region (부모멘트부의 효율성을 고려한 외부강선으로 보강된 콘크리트 거더 연속교의 거동)

  • Han, Man-Yop;Cho, Byeong-Du;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.555-564
    • /
    • 2013
  • An effective method was proposed in this study which can improve the strengthening effect of continuous girder bridges by external tendons. The improvement of the proposed strengthening method in comparison with conventional methods was analyzed by applying equivalent load concept. In order to verify the strengthening effect, the enhancement of load-carrying capacity achieved by external prestressing was investigated through the test of continuous beams that were or were not strengthened by the external prestressing. The continuous beams were fabricated by making the deck slab continuous according to general construction practice of an actual concrete girder bridge. The test results showed that the deflections and strains of the strengthened beam were significantly reduced when comparing with those of the non-strengthened beam for the same level of external loads, and the stiffness of the member increased by strengthening. In particular, it was verified that the proposed method can effectively reduce the tensile stresses of the deck caused by negative moment at the intermediate supports of a continuous bridge.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test (초고속 튜브철도 시스템을 위한 튜브 구조물의 기밀성 평가 : I. 해석모델 수립 및 재료 기밀성)

  • Park, Joo-Nam;Nam, Seong-Won;Kim, Lee-Hyeon;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents a preliminary study for air-tightness evaluation of vacuum tube structures for super-speed tube railway systems. The formula for flow rate of the air caused by the pressure difference of the inside and outside of the tube structure is derived based on Darcy's law. A test is then performed to measure the air-permeability of concrete with various compressive strengths, the result of which is used for analytical simulation of the air intrusion for a tube structure with a preliminarily defined section. It has been shown that concrete with the compressive strength of at least more than 50MPa is recommended for effective operation and maintenance of the vacuum pump systems, as the air-permeability of concrete is inversely proportional to the exponent of its compressive strength.

Impact of seawater corrosion and freeze-thaw cycles on the behavior of eccentrically loaded reinforced concrete columns

  • Diao, Bo;Sun, Yang;Ye, Yinghua;Cheng, Shaohong
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Reinforced concrete structures in cold coastal regions are subjected to coupled effects of service load, freeze-thaw cycles and seawater corrosion. This would significantly degrade the performance and therefore shorten the service life of these structures. In the current paper, the mechanical properties of concrete material and the structural behaviour of eccentrically loaded reinforced concrete columns under multiple actions of seawater corrosion, freeze-thaw cycles and persistent load have been studied experimentally. Results show that when exposed to alternating actions of seawater corrosion and freeze-thaw cycles, the compressive strength of concrete decreases with the increased number of freeze-thaw cycles. For reinforced concrete column, if it is only subjected to seawater corrosion and freeze-thaw cycles, the load resistance capacity is found to be reduced by 11.5%. If a more practical service condition of reinforced concrete structures in cold coastal regions is simulated, i.e., the environmental factors are coupled with persistent loading, a rapid drop of 15% - 26.9% in the ultimate capacity of the eccentrically loaded reinforced concrete column is identified. Moreover, it is observed that the increase of eccentric load serves to accelerate the deterioration of column structural behavior.