• Title/Summary/Keyword: concrete strength model

Search Result 1,805, Processing Time 0.036 seconds

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

Seismic Safety Enhancement of Damage-Controlled Reinforced Concrete Frames (손상제어 설계된 철근 콘크리트 프레임의 내진력 향상)

  • ;;Kim, Se Yoll
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.89-97
    • /
    • 1991
  • Conventional aseismic design methods of R/C frame all but disregard the state of damage over the entire building frame. This paper presents an automated damage-controlled design method for R/C frames which aims at an uniform energy dissipation rate throughout the building frame, so that the resulting damage is uniformly distributed as much as possible over all element. The accuracy of the basic hystertic model and the damage model for R/C members is verified by reproducing the experimental load-deformation curves of one-bay one-story frames. Application of this design method to various frame structures indicate that 1) regardless of the structural properties or input earthquake characteristics, damage-controlled frames generally survive more severe earthquake excitations and suffer less damage than conventionally designed frames, and 2) member yielding strength in the lower stories of damage-controlled frames is larger than that for conventionally designed frames, while the trend is opposite in the upper stories.

  • PDF

Variation of time-dependent convection beat transfer coefficients in beat transfer analysis at various initial beating rates of tunnel fire scenarios (요소제거모델을 활용한 열전달해석에서 터널 화재이력곡선의 초기가열구배에 따른 대류열전달계수의 변화)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Jun-Hwan;Ahn, Sung-Yol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.223-237
    • /
    • 2010
  • The initial heating rate is well known as one of the most influencing factors on the occurrence of spalling and the loss of strength in concrete after fire initiation. In this study, a series of fire tests were carried out at different initial heating rates to find out its effects on the deterioration of tunnel structural members. Heat transfer analyses combined with an element elimination model were also carried out to verify its applicability in the same conditions as the fire tests. Moreover, the convection heat transfer coefficients compatible with fire test results were derived from parametric studies. In this course, their time-dependent variations were also analyzed at different initial heating rates. Finally, a numerical formula to estimate the heat transfer coefficients at the various initial heating rates was proposed by the interpolation of the results of numerical analyses.

Reliability Analysis Method for Concrete Containment Structures (콘크리트 차폐(遮蔽) 구조물(構造物)의 신뢰성(信賴性) 해석방법(解析方法))

  • Han, Bong Koo;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 1990
  • The safety of concrete nuclear containment structures should be secured against all kinds of loading due to various natural disasters or extraordinary accidental loads. The current design criteria of concrete containment structures are not based on the reliabillty-based design concept but rely on the conventional design concept. In this paper, a probabillty-based reliability analysis were proposed based on a FEM-based random vibration analysis and serviceability limit state of structures. The limit state model defined for the study is a serviceability limit state in terms of the more realistic crack failure that might cause the emission of radioactive materials, and the results are compared with those of the strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporation the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the refernces were adapted to the situation of Korea, and especially in the case of earthquake, the design earthquake was assessed based on the available re ports on probabilistic description of earthquake ground acceleration in the Korea peninsula.

  • PDF

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

Analysis of the Effect of Seismic Loads on Residential RC Buildings using the Change in Building Size and Return Period (건물 규모 및 재현주기 변화에 따른 주거용 RC건물에 대한 시공 중 지진하중의 영향 분석)

  • Seong-Hyeon Choi;Jae-Yo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Unlike a completed building, a building under construction may be at risk in terms of safety if a load exceeds the value considered in the design stage owing to various factors, such as a load action different from that in the design stage and insufficient concrete strength. In addition, if an earthquake occurs in a building under construction, greater damage may occur. Therefore, this study studied example models with various sizes of 5, 15, 25, and 60 floors for typical building types and analyzed the effects of seismic load on buildings under construction using construction-stage models according to frame completeness. Because the construction period of the building is much shorter than the period of use after completion, applying same earthquake loads as the design stage to buildings under construction may be excessive. Therefore, earthquakes with a return period of 50 to 2,400 years were applied to the construction stage model to review the seismic loads and analyze the structural performances of the members. Thus, we reviewed whether a load exceeding that of the design stage was applied and the return period level of the earthquake that could ensure structural safety. In addition, assuming the construction period of each example model, the earthquake return period according to the construction period was selected, and the design appropriateness with the selected return period was checked.

An Experimental Study on Establishing Criteria of Gripping Work in Construction Site (건설 현장 악력 작업안전 기준 설정에 관한 실험적 연구)

  • 손기상;이인홍;최만진;안병준
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.81-95
    • /
    • 1995
  • Now, safety assurance in construction sites should be accomplished by its own organization rather than control of the code or government. It is believed that the safety assurance can be considerably improved by a lecture or an education using the existing theories or literatures up to now, but it is thought that fundamental safety assurance we not able to be accomplished without developing safety devices '||'&'||' equipment or taking fundamental measures, based on the result analyzed from workers behaviors. There are various behaviors of the workers showed in construction site, but only tests for hammerusing works such as form, re-bar, stone workers directly related to the grip strength are mainly performed, investigated and measured here for the study. The above works are similar to power grip, 7th picture on seven items which are categorized for hand grip types(Ammermin 1956 ; Jones ; Kobrick 1958). Measurements of grip strength are commonly taken in anthropometric surveys. They are easy to administer but unfortunately it is rather dubious whether they yield any data that are of interest to the engineer. Very fewer controls of tools are grasped and squeesed studies showed very little overall correlation between grip strength and other measures of bodily strength (Laubach, Kromer, and Thordsen 1972), but hammer-using work which is practically progressed in construction site are mainly influenced with grip strength. According to the investigation on work measurement, it is shown that 77% of form worker are using hammer to be related to grip strength. In this study, it is particularly noticed that wearing safety gloves in construction site is required for workers safety but 20% difference between grip strength with safety gloves and without ones are commonly neglected in the site(Fig. 1). Nevertheless, safety operation with consideration of the above 20% difference is not considered in the construction site. Factors of age, kinds of work, working time, with or without safety gloves are in vestigated '||'&'||' collected at the sites for this study. Test, not at each working hour but at 14 : 00 when the almost all of the workers think the most tired, resulting from the questionaires, also when it is shown on the research report has been performed and compared for main kinds of works : form '||'&'||' re-bar work. Tests were performed with both left SE rightand of the workers simultaneously in construction site using Rand Dynamometer(Model 78010, Lafayette Instrument Co., Indiana, U.S.A) by reading grip strength on the gauge while they are pulling, and then by interviewing on their ages, works, experiences and etc., directly. The above tests have been performed for the dates of 15th march-26th May '95 with consideration of site condition. And even if various factors of ambient temperature on the testing date, working condition, individual worker's habit and worker's condition of the previous ate are concerned with the study. Those are considered as constants in this study. Samples are formwork 53, rebar 62, electrician 5, plumber 4, welding 1 from D construction Co., Ltd, ; formwork 12, re-bar 5, electrician 2, from S construction Co., Ltd, , formwork 78, re-bar 18, plumber 31, electrician 13, labor 48, plumber 31, plasterer 15, concrete placer 6, water proof worker 3, maisony 5 from B construction Co., Ltd. As In the previously mentioned, main aspect to be investigated in this study will be from '||'&'||' re-bar work because grip strength will be directly applied to these two kinds of works ; form '||'&'||' re-bar work, eventhough there are total 405 samples taken. It is thought that a frequency of accident occurrence will be mainly two work postures "looking up '||'&'||' looking down" to be mainly sorted, but this factor is not clarified in this study because It will be needed a lot of work more. Tests has been done at possible large scale of horizontally work-extended sites within one hour in order to prevent or decrease errors '||'&'||' discrepancies from time lag of the test. Additionally, the statistical package computer program SPSS PC+has been used for the study.

  • PDF

A Study for Field Application of Environmental-friendly Waterproof Method for Riverbed (친환경 하상차수공법 현장 적용성에 관한 연구)

  • Park, Minchul;Kim, Seonggoo;Kwak, Nokyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • In period of rapid economic development, as doing river conservation work by using harmful materials environmental pollution has adversely effected humans, animals and plants frequently. For recovery of environmental pollution it needs a lot of time and cost. Therefore, in this study, in order to take an environment-friendly method which is also economical and durable both results of the laboratory model test and field test were compared and analyzed. According to the results of the laboratory model test, those methods such as concrete paving, asphalt paving, bentonite mat, stabilized soil method and mixed soil method have small amount of seepage, but on the other hand compaction soil, grassland and permeable materials have considerable amount of seepage. The results of field test show a similar tendency with laboratory test and have been satisfied to assess standard of domestic water permeability below $1.0{\times}10^{-7}cm/sec$ and unconfined compressive strength is also than 1.0MPa so it has been satisfied about standard. In conclusion, as compaction rate increased, as unconfined compression strength increased and coefficient of permeability decreased.

Structural Behavior of RC Roof Slab under Cyclic Temperature Load (반복 일사하중에 대한 철근콘크리트 지붕슬래브의 구조적 거동)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Cho, Yong-Man;Choi, Gi-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • A variation of temperature acting on a RC roof slab causes a change of stress in concrete since it expands during summer and is compressed during winter. This behavior repeats annually and makes an affection to the structural capacity of member for both serviceability and ultimate level. In this paper, a cyclic temperature loading variation is calculated by analyzing the weather data of Korea for 20 years. In addition, an experimental work is planned to find the long term effect of temperature variation. Six RC slab are made with same dimension. Test parameters are loading duration (10, 20, 30 year) and whether it has pre-damage or not. Observation of stiffness variations according to cyclic loading period shows that the serious stiffness drop happens after 10 year's cyclic loading at summer while after 30 year's loading at winter. From the fracture test about slabs damaged by long term cyclic loading, however, the capacity of member such as initial stiffness and maximum strength were not changed except yield strength according to the period of long term cyclic loading. The yield strength tends to decrease after 20 year's cyclic loading.