• Title/Summary/Keyword: concrete strength control

Search Result 849, Processing Time 0.026 seconds

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

A Study Using Nondestructive Tests Based on Stress Waves for the Estimation of Concrete Compressive Strength (응력파 기반 비파괴 검사법에 의한 콘크리트 강도 추정에 관한 연구)

  • Joo, Hyun-Jee;Cho, Young-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.675-678
    • /
    • 2004
  • The importance of predicting concrete compressive strength of in concrete structures is gradually increasing in construction industry. The estimation of concrete compressive strength of is a critical factor of the construction schedule and quality control. This study was performed to examine the relationship between concrete compressive strength and stress wave velocity which was determined by the impact echo method and SASW method.

  • PDF

Crack width control of precast deck loop joints for continuous steel-concrete composite girder bridges

  • Shim, Changsu;Lee, Chidong
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Precast deck joints have larger crack width than cast-in-place concrete decks. The initial crack typically occurs at the maximum moment but cracks on precast joints are significant and lead to failure of the deck. The present crack equation is applied to cast-in-place decks, and requires correction to calculate the crack width of precast deck joints. This research aims to study the crack width correction equation of precast decks by performing static tests using high strength and normal strength concrete. Based on experimental results, the bending strength of the structural connections of the current precast deck is satisfied. However it is not suitable to calculate and control the crack width of precast loop connections using the current design equation. A crack width calculation equation is proposed for crack control of precast deck loop joints. Also included in this paper are recommendations to improve the crack control of loop connections.

Optimum PP Fiber Dosage for the Control of Spalling of High Strength Reinforced Concrete Columns

  • Yoo, Suk-Hyeong;Shin, Sung-Woo;Kim, In-Ki
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.103-109
    • /
    • 2006
  • Spalling is defined as damages to concrete exposed to high temperature during fire, causing cracks and localized bursting of small pieces of concrete. As the concrete strength increases, the degree of damage caused by spalling becomes more serious due to impaired permeability. It is reported that polypropylene(PP) fiber has an important role in protecting concrete from spalling, and the optimum dosage of PP fiber is 0.2%. However, this study was conducted on non-reinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various quantity of PP fibers is investigated in this study. The results revealed that the ratio of unstressed residual strength of columns increased as the concrete strength increased and as the quantity of PP fiber increased from 0% to 0.2%. However, the effect of PP fiber quantity on residual strength of column was barely above 0.2%.

Influence of Aggregate on the Rebound Value of P Type Schmidt Hammer (P형 슈미트햄머의 반발도에 미치는 골재종류의 영향)

  • 김태현;김기정;이용성;이백수;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.239-242
    • /
    • 2002
  • This study is intended to investigate the relationship between rebound value of P type schmidt hammer and the compressive strength with various aggregates, and a series of experiments about early strength quality control by P type schmidt hammer was performed. According to the results, the compressive strength of concrete using basalt and limestone aggregate is higher by 3% and lower by 4% than that of concrete using granite aggregate respectively. Concrete using basalt and lime stone aggregate show high rebound value in vertical strike. Estimation of the compressive strength does not show differences in horizontal strike, but the compressive strength is estimated high in order of granite, basalt and limestone aggregate in vertical strike. A good correlation between the rebound value of schmidt hammer and the compressive strength is confirmed regardless of aggregate types, so it could be possible to control the quality of concrete by P type schmidt hammer test when basalt and limestone aggregates are used at the same time.

  • PDF

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

An Evaluation of Mechanical Properties of Ultra High Strength Concrete(UHSC) (초고강도 콘크리트의 재료역학적 특성 평가)

  • Lim Hee Jae;Shin Sung Woo;Ahn Jong Mun;Lee Kwang Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.281-284
    • /
    • 2004
  • The most important reason of using of ultra high strength concrete in super tall building is that ultra high strength concrete can reduce the section of members and control side sway effectively. However, the practical utilization of ultra high strength concrete is dependent not only on the production techniques, but also the overall preparation including proper code provisions, construction technique. The purpose of this study is to evaluate of mechanical properties of UHSC, such as modulus of elasticity, stress-strain behavior, modulus of rupture and tensile splitting strength. It is similar to normal or high strength concrete but necessary to discern the difference between normal or high strength concrete and ultra high strength concrete and modify existed equations. And in this study another important factor is to discern the difference according to member size, curing method in ultra high strength concrete experimentally.

  • PDF

The Study on Earlier Evaluation of Concrete Strength Using Electric Resistance Method (전기 저항법을 이용한 콘크리트 조기 강도 판정에 관한 연구)

  • 김화중;이도현;윤상천;박정민;최신호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.130-135
    • /
    • 1995
  • We can consider that the study on early evaluation of strength of concrete is useful to raise safety of building and utility of quality control of concrete is useful to raise safety of building and utility of quality control of concrete. In this paper, was proposed to method early to predict strength of concrete with key parameters, such as Water/Cement(W/C) ratio and Sand / Aggregate(S/A) ratio. Through a series of experiment, the obtained results are summarized as follow. $\circled1$ The ratio of resistance was decteased as the increase of W/C ratio. $\circled2$ The maximum value for the ratio of resistance and compressive strength was presented in the case of 40% S/A ratio. $\circled3$ The relationship. of the ratio of resistance and compressive strength on 28days according to the change of W/C and S/A ratio is to be: $F_{28}=-0.00104R^2 + 2.263R - 935.5$ (W/C Ratio) $F_{28} = 0.007R^2 - 10.693R - 4269.1$ (S/A Ratio)

  • PDF

Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design (간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성)

  • Choi, Yun-Wang;Shin, Hwa-Cheol;Kim, Yong-Jic;Choi, Wook;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

Production and Quality Control of Long Distance Delivered High Strength Concrete (장거리 운반 고강도 콘크리트 제조 및 품질관리)

  • 박연동;정재동;박기청;노재호;조일호;방희상;국중욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.8-13
    • /
    • 1995
  • High strength ready-miced concrete with delivering time of about 90 minutes is successfully produced at ready-mixed concrete plant and placed columns and retaining walls of a tall building without any problems. The design strength of the concrete is 450 kgf/$\textrm{cm}^2$ and the required average compressive strength is 540 kgf/$\textrm{cm}^2$ according to ACI 363R-84 report with assumed coefficient of variation of 12% For the producing of good quality concrete, many laboratary and field tests are carried out. As the results of this study, the slump loss of high strength concrete is largely influenced by kinds of superplasticizer. The measured pump pressure of high strength concrete with slump of 22cm is higher than that of normal strength concrete with slump of 18cm by about 20~30% The measured average 28-day compressive strength of the concrete is 551 kgf/$\textrm{cm}^2$ and the coefficient of variation is 2.3%

  • PDF