• 제목/요약/키워드: concrete strain profile

검색결과 25건 처리시간 0.028초

프리텐션 프리스트레스트 콘크리트 부재의 정착길이 평가 (Experimental study on development length of prestressing strand in pretensioned prestressed concrete members)

  • 김의성
    • 건설안전기술
    • /
    • 통권49호
    • /
    • pp.84-91
    • /
    • 2009
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

  • PDF

프리텐션 프리스트레스트 콘크리트 부재의 정착길이 정가 (Experimental Study on Development Length of Prestressing Strand in Pretensioned Prestressed Concrete Members)

  • 김의성
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.115-121
    • /
    • 2008
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

프리스트레스트 콘크리트 박스 거더 교량의 프리스트레스 손실 추정에 관한 연구 (A Study on the Estimation of Prestress Losses in Prestressed Concrete Box Girder Bridges)

  • 오병환;양인환;김지상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.111-120
    • /
    • 2001
  • This paper aims at estimating instantaneous prestress losses by measuring the actual prestress forces in prestressed concrete (PSC) box girder bridges. Measurement were taken to study initial prestress losses such as friction losses and slip losses. A new strain gauge system was developed to measure strains in internal tendons. The system was installed on a total of 20 tendons in a PSC box girder bridges. The variation of prestress forces were monitored during prestressing tendon and after prestress transfer. The prestress losses are also calculated including friction losses and slip losses. The measured data were compared with the theoretical values. The result shows that the measured prestress forces agree well with the theoretical values. It is shown that prestress force of each strand in the same tendon is a bit different. This study also shows that prestress losses of continuity tendons during prestress transfer are significantly different each other, which results from the variety of buttress location and tendon profile. The present study provides realistic information on the estimation of actual prestress forces and losses in PSC box girder bridges.

  • PDF

FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용 (Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System)

  • 박태원;나웅진;권성준
    • 콘크리트학회논문집
    • /
    • 제22권1호
    • /
    • pp.19-27
    • /
    • 2010
  • 건축물이나 교량과 같은 RC 구조물의 경우, 다양한 유해 환경하의 재료적인 열화나 구조적 문제로 콘크리트의 노후화 및 손상이 발생하게 된다. 콘크리트의 균열이나 철근의 부식, 구조 단면의 변형 등은 구조적 안전성 저하 및 구조물 거동 특성 변화의 주요 원인이 되기도 한다. 따라서 이와 같은 콘크리트 구조물의 보수 보강을 위하여, 효과적이고 적용이 간편한 공법의 개발이 콘크리트 분야의 중요한 연구 과제 중의 하나로 인식되어 왔다. 다양한 보수 보강 기법들이 과거 수십 년 동안 개발되어 적용되고 있으며, 이중에서도 최근 FRP 복합 재료를 구조물의 외부에 접착시키는 방법을 통한 보강 방식이 많이 사용되고 있다. 이 연구는 인공 지능(AI)의 일종인 뉴로퍼지모델(ANFIS) 을 이용하여, FRP로 보강된 원주형 콘크리트 부재의 보강 효과를 분석하는데 그 목적이 있다. ANFIS 모델을 이 연구에 적용하기 위하여, 기존 연구 자료 및 실험에서 얻은 결과를 통해 학습 데이터와 시험 데이터 세트를 구축하였다. 이 연구에서 구축된 ANFIS 모델은 기존 피보강 콘크리트의 압축강도, 보강재의 두께, 보강재의 보강 겹수, 보강재의 탄성계수, 보강재의 파단강도 및 보강재와 피보강재의 체적비, 피보강재의 부재크기를 입력 자료의 파라미터로 사용하여, 압축강도, 변형률, 2차탄성계수 등을 예측하는 방식으로 활용될 수 있으며, ANFIS 모델을 통하여 예측된 결과를 기존 연구자들이 제안한 FRP 보강 콘크리트 부재의 구성 방정식과 비교할 때 더 높은 정확도로 예측이 가능함을 확인할 수 있다.

Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석 (Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method)

  • 김기욱;박문호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.111-119
    • /
    • 2005
  • 철근콘크리트 전단벽 또는 플랜지 구조물의 해석시 비선형으로 인한 거동을 해석하여 파괴거동을 좀더 명확하고 신뢰성있게 예측하고자 하는데 본 연구의 목적이 있다. 콘크리트 응력-변형율 모델로는 Hognestad, Vallenas의 이론을 적용하고, 철근 응력-변형율 모델로는 Ramberg-Osgood 이론을 적용하였으며, 구속(confined) 및 비구속(unconfined)을 고려하여 비선형 해석을 수행하였다. 단면 해석 모델은 Mander가 제안한 층상화 단면해석을 적용하였고, 감마팩터를 고려한 새로운 변형율도를 이용하였다. 이러한 단면에 경계효과를 고려한 Boundary warping과 전단효과를 고려한 Shear warping 및 초기 균열을 고려한 경우(precracked)와 초기 균열이 발생하지 않은 경우(uncracked)로 구분하여 단면 해석을 시행하였다.

Study on behavior of T-section modular composite profiled beams

  • Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.457-473
    • /
    • 2010
  • In this study, specimens were made with profile thicknesses and shear reinforcement as parameters. The bending and shear behavior were checked, and comparative analysis was conducted of the results and the theoretical values in order to see the applicability of T-section Modular Composite Profiled Beams (TMPB). In TMPB, the profiles of formwork functions play a structural role resisting the load. Also, the module concept, which is introduced into TMPB, has advantages: it can be mass-produced in a factory, it is lighter than an existing H-beam, it can be fabricated on the spot, and its section size is freely adjustable. The T1 specimens exhibited ductile behavior, where the whole section displayed strain corresponding to yielding strain at least without separation between modules. They also exhibited maximum strength similar to the theoretical values even if shear reinforcement was not applied, due to the marginal difference between shear strength and maximum bending monment of the concrete section. A slip between modules was incurred by shear failure of the bolts in all specimens, excluding the T1 specimen, and therefore bending moment could not be fully displayed.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

철근의 연성이 소성힌지 생성에 미치는 영향 (Influence of ductility of reinforcement on the plastic hinge formation)

  • 박대균;조재열;박성현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.97-100
    • /
    • 2008
  • 최근 들어 고강도 철근의 사용이 증가하고 있지만, 지진위험이 있는 지역의 내진구조물에 있어서는 고강도 철근의 취성적 성질로 인해 그 사용이 제한되어 왔다. 그러나, 철근의 연성의 변화가 기둥의 부재레벨의 연성도에 미치는 영향에 대해서는 많은 연구가 없는 실정이다. 특히 고강도 철근을 사용하는 경우 철근의 연성의 변화로 인해 부재의 소성힌지 길이가 달라질 것으로 예상되지만, 기준의 소성힌지길이 산정식은 철근 등 재료의 특성을 고려하지 못하고 있다. 지진하중을 받는 철근콘크리트 기둥의 소성힌지길이는 실험을 통해서 측정하기는 어려움이 많다. 따라서, 본 논문에서는 해석적인 방법을 통하여 재료레벨의 연성, 특히 철근의 연성이 소성힌지의 생성에 미치는 영향을 평가하고, 그 영향을 고려한 소성힌지길이 산정식을 제안하고자 한다.

  • PDF