• Title/Summary/Keyword: concrete specimens

Search Result 3,628, Processing Time 0.03 seconds

Hysteresis of concrete-filled circular tubular (CFCT) T-joints under axial load

  • Liu, Hongqing;Shao, Yongbo;Lu, Ning;Wang, Qingli
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.739-756
    • /
    • 2015
  • This paper presents investigations on the hysteretic behavior of concrete-filled circular tubular (CFCT) T-joints subjected to axial cyclic loading at brace end. In the experimental study, four specimens are fabricated and tested. The chord members of the tested specimens are filled with concrete along their full length and the braces are hollow section. Failure modes and load-displacement hysteretic curves of all the specimens obtained from experimental tests are given and discussed. Some indicators, in terms of stiffness deterioration, strength deterioration, ductility and energy dissipation, are analyzed to assess the seismic performance of CFCT joints. Test results indicate that the failures are primarily caused by crack cutting through the chord wall, convex deformation on the chord surface near brace/chord intersection and crushing of the core concrete. Hysteretic curves of all the specimens are plump, and no obvious pinching phenomenon is found. The energy dissipation result shows that the inelastic deformation is the main energy dissipation mechanism. It is also found from experimental results that the CFCT joints show clear and steady stiffness deterioration with the increase of displacement after yielding. However, all the specimens do not perform significant strength deterioration before failure. The effect of joint geometric parameters ${\beta}$ and ${\gamma}$ of the four specimens on hysteretic performance is also discussed.

A Study Properties of concrete Recycling Cockle Shells as Fine Aggregate (고막 패각의 콘크리트 잔골재로 재활용 방안에 관한 연구)

  • Kim, Jeong-Sup;Kim, Kwang-Sup;Kim, Pan-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.141-146
    • /
    • 2004
  • 1) As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. Comparing compressive strength between no-mixed Specimens and Specimens of containing Cockle shells, Specimens containing Cockle shells showed higher strength in 60 days and 90 days of age, and as ark Cockle is contained and age is elapsed, compressive strength is also increased In addition, estimation of compressive strength by reactive hardness in concrete using Cockle shells as aggregate shows low reliability. 2) As a result of experimenting compressive strength after heating, Specimens containing Cockle shells and non-mixed Specimens showed similar strength at $200^{\circ}C$, but compressive strength was lowered as content of Cockle shells increased at over $400^{\circ}C$ and heating temperature was higher. It is because Cockle shells was fired by heat and then its adhesion and bonding capacity were lost. 3) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~20% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

A Evaluation of Environmental Resistance for Bio-Polymer Concretes (바이오 폴리머 콘크리트의 환경 저항성 평가 연구)

  • Kim, Je Won;Kim, Tae Woo;Park, Hee Mun;Kim, Bu Il
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.75-79
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the environmental resistance of bio-polymer concrete for use of pavement materials developed for reducing the carbon-dioxide. METHODS : The compression, tension, and bending strength tests were conducted on the bio-polymer concrete specimens with and without environmental conditioning. The specimens were conditioned using the freezing-thaw and accelerated weathering process for long period of time. To assess the resistance against chloride, the chloride ion penetration resistance tests were carried out on the bio-polymer concrete specimens. RESULTS : Test results show that the maximum difference in strength between specimens with and without conditioning is about 2.6MPa indicating that the effect of environmental conditioning on specimen strength is negligible. Based on the chloride ion penetration resistance test, the penetration quantity of electric charge of the specimens is zero and there is no ion penetration within the bio-polymer concrete. CONCLUSIONS : It is found from this study that there is slight change in strength of bio-polymer concretes before and after environmental conditioning process and no chloride ion penetration observed in these specimens. Therefore, the developed bio-polymer concretes can be applied effectively as pavement materials due to the small change of physical properties with environment change.

An Evaluation of Corrosion Protective Systems for Reinforcing Steel in Concrete (콘크리트 구조물의 철근 방식성능 실험평가)

  • Hur, Jun;Hong, Gi-Suop;Oh, Sung-Mo;Jang, Ji-Won;Choi, Eung-Kyu;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.275-280
    • /
    • 1997
  • An experimental study to evaluate corrosion protection systems was undertaken with 47 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring marcrocell corrosion currents, which are generally accepted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl an exposed to a 10 percent of NaCl show high values of corrosion currents. For the specimens with water repellent membrane currents kept relatively low numerical values, while test specimens with surface corrosion inhibitor hyprotective systems show high values of corrosion currents. No clear indication of the corrosion inhibitor protective systems might be due to the extremely high chloride exposure of the specimens, which has brought the accelerated corrosion. It would be expected that evaluation of the corrosion protective systems need long-term measurement with specimen exposed les chloride but simulating the real condition.

  • PDF

A Study on Ductility Capacity of Reinforced Concrete Beam without Shear Reinforcement Using Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 전단보강근이 없는 철근콘크리트 보의 연성에 관한 연구)

  • Kim, Jeong-Sup;Kim, kwang-seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.139-146
    • /
    • 2005
  • As a result of compressive strength, specimens having mixture rate of cockle shells of $15\%\;and\;20\%$ showed more increases of compressive strength than non-mixture specimens as age increases. Ductility capacity of specimens was higher in specimens mixing cockle shells than in specimens using general fine aggregates and specimen of $10\%$ of cockle shells was highest in ductility capacity. To sum up all experimental results, ductility capacity of specimen without shear reinforcement using mixture of cockle shell was higher than non-mixture specimen and it is considered that mixture of cockle shells up to $20\%$ as fine aggregate for concrete will be available. Continuous researches on durability, workability and economy of crushed cockle shells used for substitute fine aggregate of concrete will be needed.

Evaluation of Corrosion Protective System for Reinforced Concrete Structures Constructed With Sea Sand (해사 혼입된 콘크리트 구조물의 부식도 평가)

  • 김웅희;홍기섭;오승모;장지원;최응규;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.203-209
    • /
    • 1997
  • An experimental study to evaluate to evaluate corrosion protection systems was undertaken with 44 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring macrocell corrosion currents, which are genrerally accecpted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl and exposed to wet(outdoor) and dry(indoor) conditions but not to saltwater show very low values of corrosion measurements regardless applying any corrosion protective systems. Corrosion currents of the specimens exposed at 10 percent of NaCl were higher than that of the specimen exposed at 5 percent of NaCl, so the density of the salt water had an influential effect on the test. For the specimens with water repellent membrane currents kept relatively low numerical values, but test specimens with surface corrosion inhibitor protective system showed high values of corrosion current. It would be expected that evaluation of the corrosion protective systems need long-term measurement.

  • PDF

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.

An evaluation of compressive lap splice of the D22 rebar by concrete strengths (콘크리트 강도변화에 따른 D22mm 철근의 압축이음 성능 평가)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1081-1084
    • /
    • 2008
  • Column specimens were constructed with main parameters significantly affecting the strength of the compression lap splice, such as lap length, spacing of lapped bars, amount and location of transverse reinforcements, and concrete strength. An experimental study has been conducted with column specimens in concrete strength of 40 to 60 MPa. Diameters of lapped reinforcing bars are 22 mm. An axial load was monotonically applied to the column specimens. All specimens failed in a brittle sudden manner and cover concrete was blasted out at maximum load. Compression lap splice strengths of specimens were evaluated from strains measured at the beginning of the lap length. Effects of the main parameters on the strengths of compression lap splice are assessed. Similarly to strengths of tension lap slice, the compression splice strength is found to be affected by lap length, spacing of lapped bars, transverse reinforcements.

  • PDF

Fire resistance of high strength fiber reinforced concrete filled box columns

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.611-621
    • /
    • 2017
  • This paper presents an investigation on the fire resistance of high strength fiber reinforced concrete filled box columns (CFBCs) under combined temperature and loading. Two groups of full-size specimens were fabricated. The control group was a steel box filled with high-strength concrete (HSC), while the experimental group consisted of a steel box filled with high strength fiber concrete (HFC) and two steel boxes filled with fiber reinforced concrete. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The test results show that filling fiber concrete can improve the fire resistance of CFBC. Moreover, the configuration of longitudinal reinforcements and transverse stirrups can significantly improve the fire resistance of CFBCs.