• Title/Summary/Keyword: concrete size effect

Search Result 471, Processing Time 0.027 seconds

A Study on the Effect of Specimen Size using Resistivity Estimation Model (비저항추정모델을 이용한 실험체 크기의 영향에 대한 연구)

  • Lim, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.113-119
    • /
    • 2019
  • This study aims at the analysis using the Resistivity Estimation Model (REM) to examine the effect of specimen size on the measurement of electrical resistivity. In the experiment, specimens of concrete were fabricated and the apparent resistivity was measured for each electrode interval. The apparent resistivity measured was found to be distorted in the apparent resistivity as the specimen size became smaller and closer to the outside (edge). As a result of comparing the experimental and analysis values, it is expected that REM can be used to examine the effect of the size of the specimen.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Influence of the Filler's Particle Size on the Mechanical Properties of Ultra High Performance Concrete(UHPC) (충전재의 입경 크기가 초고성능 콘크리트의 역학적 특성에 미치는 영향)

  • Kang, Su Tae;Park, Jung Jun;Ryu, Gum Sung;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.573-580
    • /
    • 2008
  • In this paper, we estimated the effect of the siliceous filler's particle size on the performance of Ultra High Performance Concrete (UHPC). Filler's particle diameters considered in this paper were about 2, 4, 8, 14, $26{\mu}m$ and the performance was evaluated by testing fluidity in fresh concrete, compressive strength, ultimate strain, elastic modulus and flexural strength in hardened concrete. We also carried out XRD and MIP tests to analyze the relationship between the mechanical properties and microstructure. Test results showed that the smaller filler's particle size improves flowability and strength properties. MIP results revealed that the smaller size of filler decreased the porosity and thus increased the strength of UHPC. From XRD analysis, we could find out there were little influence of filler's particle size on chemical reactivity in UHPC.

Effect of crumb rubber on compressive behaviour of CRCFST stub columns

  • Liu, Dawei;Liang, Jiongfeng;Zhang, Guangwu;Wang, Jianbao
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.267-272
    • /
    • 2020
  • This paper investigates the effect of crumb rubber (CR) on compressive behaviour of crumb rubber concrete filled steel tube (CRCFST) stub columns. Therefore, experiments on 16 stub columns subjected to axial loading are carried out. The results show that the failure modes of CRCFST stub columns with different CR replacement ratios and CR size are similar, manifested the buckling of the outer steel tube. The axial bearing capacity and stiffness both decrease with an increase in CR replacement ratio, and with decreasing CR size.

Effect of the Pore Structure of Concrete on the Compressive Strength of Concrete and Chloride Ions Diffusivity into the Concrete

  • Kim, Jin-Cheol;Paeng, Woo-Seon;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.345-351
    • /
    • 2003
  • The transport characteristics of deleterious ions such as chlorides depend on the pore structures of concrete and are the major factors in the durability of concrete structures in subjected to chloride attack such as in marine environments. In this paper, the effect of the pore structure on compressive strength and chloride diffusivity of concrete was investigated. Six types of concretes were tested. The pore volume of concrete containing mineral admixtures increased in the range of 3∼30nm due to micro filling effect of hydrates of the mineral admixtures. There was a good correlation between the median pore diameter, the pore volume above 50nm and compressive strength of concrete, but there was not a significant correlation between the total pore volume and compressive strength. The relationship between compressive strength and chloride diffusivity were not well correlated, however, pore volume above 50nm were closely related to the chloride diffusion coefficient.

A Study on Mechanical Characteristics of Reinforced Concrete Columns Confined with Carbon Fiber Sheet (CFS로 횡보강된 철근콘크리트 기둥의 역학적 특성에 관한 연구)

  • 권영웅;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.743-749
    • /
    • 1999
  • Recently new rehabilitation techniques have been proposed with advanced composite materials like carbon fiber, aramid, glass fiber sheet and so forth. The purpose of this paper is to investigate the mechanical characteristics of reinforced concrete columns confined with carbon fiber sheet and evaluate the degree of their strengthening effect. For the test, the specimen size of column is 15cm$\times$15cm$\times$90cm reinforced with 4 number of main bars of 10 mm diameter, tied bars of 6 mm diameter and slenderness ratio 20. Columns were wrapped with carbon fiber sheet along the column length. It is necessary to make some assumption regarding the confinement of carbon fiber sheet to apply to reinforced concrete columns under concentric loads. The strength gain effect of columns confined with carbon fiber sheet could be predicted using the proposed equation.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

Fire Resistance of High Strength Concrete Columns with Design Strength 120 MPa (설계강도 120 MPa 고강도 콘크리트 기둥의 내화 성능)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Gyu-Dong;Sohn, Yu-Shin;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.21-24
    • /
    • 2006
  • An experimental investigation was earned out to evaluate the fire performance of high strength concrete column made with different section size. Two different high strength concrete columns measuring 3,428mm in height and with the same tie spacing of 150mm were prepared to evaluate the effect of section size of $305{\times}305mm$ and $500{\times}500mm$ on the fire resistance. Compressive strength was 138MPa at the time of fire resistance fire testing. Based on the test result, fire resistance of column with the larger section of $500{\times}500mm$ exhibited the better performance than that of the smaller section of $305{\times}305mm$. The former withstood against the very high temperature over 240minutes, while the latter resisted during 176minutes.

  • PDF

Evaluation of Fiber and Blast Furnace Slag Concrete Chloride Penetration through Computer Simulation

  • Kim, Dong-Hun;Petia, Staneva;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • Durability of concrete is an important issue, and one of the most critical aspects affecting durability is chloride diffusivity. Factors such as water.cement ratio, degree of hydration, volume of the aggregates and their particle size distribution have a significant effect on chloride diffusivity in concrete. The use of polypropylene fibers(particularly very fine and well dispersed micro fibers) or mineral additives has been shown to cause a reduction in concrete's permeability. The main objective of this study is to evaluate the manner in which the inclusion of fiber(in terms of volume and size) and blast furnace slag(BFS) (in terms of volume replacement of cement) influence the chloride diffusivity in concrete by applying 3D computer modeling for the composite structure and performing a simulation of the chloride penetration. The modeled parameters, i.e. chloride diffusivity in concrete, are compared to the experimental data obtained in a parallel chloride migration test experiment with the same concrete mixtures. A good agreement of the same order is found between multi.scale microstructure model, and through this chloride diffusivity in concrete was predicted with results similar to those experimentally measured.

Mechanical Properties of Specialty Cellulose Fiber Reinforced Concrete (특수 가공된 셀룰로오스섬유보강 콘크리트의 역학적 특성)

  • 원종필;박찬기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.307-312
    • /
    • 1999
  • This study has been performed to obtain the mechanical properties of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15${\times}$15${\times}$55mm. The effect of differing volume fraction (0.08%, 0.1%, 0.15%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural strength.

  • PDF