• 제목/요약/키워드: concrete rehabilitation

검색결과 316건 처리시간 0.023초

고속도로 노후 콘크리트 포장 보강의 경제성 분석 사례 연구 (Case Studies of the Life Cycle Cost Analysis for Rehabilitation of Deteriorated Expressway Concrete Pavements)

  • 서영찬;박지원;김찬우
    • 한국도로학회논문집
    • /
    • 제18권3호
    • /
    • pp.33-45
    • /
    • 2016
  • PURPOSES : Concrete pavement has been used in the construction of the Jungbu expressway in 1987. More than 60% of the pavement on the expressway is currently made of concrete, but most has been used far beyond their design life. Pavement life has been extended through routine maintenance or overlay. However, the structural capacity of the pavement has reached its limit, and extensive rehabilitation/reconstruction with long time traffic blocking should be considered. The three following issues on concrete rehabilitation/reconstruction will be discussed: (1) economic comparison of asphalt inlay and asphalt overlay, (2) economic comparison preventive overlay on a section which is currently good and routine overlay on the section which will be poor, and (3) economic analysis of early-strength concrete when it is used in concrete reconstruction. METHODS : First, various life cycle cost analysis tools were compared, and the proper tool for the extensive rehabilitation/reconstruction was selected. Second, a sensitivity analysis of the selected tool was performed to find the influential input variables, which should be carefully selected in the analysis. Third, three case studies, which can be issues in the rehabilitation/reconstruction of the expressway concrete pavement in Korea, were performed. RESULTS : Asphalt overlay without milling the deteriorated concrete showed 18~25% lower life cycle cost than the current asphalt inlay with milling. The good current preventive overlay on the section was economically justified within the scope of this study. The construction cost limit of the early strength concrete was suggested to be economical for 1, 3, and 7 days of construction alternative opening. CONCLUSIONS : CA4PRS was a viable tool for comparing various rehabilitation/reconstruction issue alternatives. Several concrete issues associated with the rehabilitation/reconstruction of the deteriorated concrete pavement were discussed as mentioned above.

고강도 RC보의 탄소섬유쉬트 보강에 대한 연구 (A Study on Carbon Fiber Sheet Rehabilitation of Reinforced High Strength Concrete Beams)

  • 김종효;곽계환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.450-455
    • /
    • 1997
  • In recent years the research and development about the new material proceeds rapidly and actively in building industry. We are concerned with high-strength concrete as a new material. As the building structure becomes bigger, higher and more specialized, so does the demand of material and member with high strength for building expands greatly. In the future, we will quite need to research repair and rehabilitation to make high strength concrete structural building for our safe. So, I did an study on carbon fiber sheet rehabilitation(CFSR) of reinforced high strength concrete beams. The carbon fiber reinforced plastic(CFRP) bonding method is widely used for reinforcing the existing concrete structure among the various methods. The test results indicate that CFS is very effective for strengthening the damaged beams and controlling deflections of the repaired beams. When carbon fiber sheet rehabilitation of reinforced high strength concrete beams happened diagonal crack, the increase in the number of CFS layer didn't effect the increase in strength of beams. Also, by changing the CFS stick position gave diversified ultimate load in CFSR beams.

  • PDF

Concrete crack rehabilitation using biological enzyme

  • Chen, How-Ji;Tai, Pang-Hsu;Peng, Ching-Fang;Yang, Ming-Der
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.413-417
    • /
    • 2017
  • Concrete is a material popularly used in construction. Due to the load-bearing and external environmental factors during utilization or manufacturing, its surface is prone to flaws, such as crack and leak. To repair these superficial defects and ultimately and avoid the deterioration of the concrete's durability, numerous concrete surface protective coatings and crack repair products have been developed. Currently, studies are endeavoring to exploit the mineralization property of microbial strains for repairing concrete cracks be the repairing material for crack rehabilitation. This research aims to use bacteria, specifically B. pasteurii, in crack rehabilitation to enhance the flexural and compression strength of the repaired concrete. Serial tests at various bacterial concentrations and the same $Urea-CaCl_2$ medium concentration of 70% for crack rehabilitation were executed. The results prove that the higher the concentration of the bacterial broth, the greater the amount of calcium carbonate precipitate was induced, while using B. pasteurii broth was for crack rehabilitation. The flexural and compression strengths of the repaired concrete test samples were the greatest at 100% bacterial concentration. Compared to the control group (bacterial concentration of 0%), the flexural strength had increased by 32.58% for 1-mm crack samples and 51.01% for 2-mm crack samples, and the compression strength had increased by 28.58% and 23.85%, respectively. From the SEM and XRD test results, a greater quantity of rectangular and polygonal crystals was also found in samples with high bacterial concentrations. These tests all confirm that using bacteria in crack rehabilitation can increase the flexural and compression strength of the repaired concrete.

Performance-based plastic design for seismic rehabilitation of high rise frames with eccentric bracing and vertical link

  • Karimi, Rouhina;Rahimi, Sepideh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.623-633
    • /
    • 2019
  • A large number of available concrete buildings designed only considering gravity load that require seismic rehabilitation because of failure to meet plasticity criteria. Using steel bracings are a common type of seismic rehabilitation. The eccentric bracings with vertical link reduce non-elastic deformation imposed on concrete members as well as elimination of probable buckling problems of bracings. In this study, three concrete frames of 10, 15, and 20 stories designed only for gravity load have been considered for seismic improvement using performance-based plastic design. Afterwards, nonlinear time series analysis was employed to evaluate seismic behavior of the models in two modes including before and after rehabilitation. The results revealed that shear link can yield desirable performance with the least time, cost and number of bracings of concrete frames. Also, it was found that the seismic rehabilitation can reduce maximum relative displacement in the middle stories about 40 to 80 percent. Generally, findings of this study demonstrated that the eccentric bracing with vertical link can be employed as a suitable proxy to achieve better seismic performance for existing high rise concrete frames.

온도프리스트레싱 공법을 이용한 콘크리트교량의 보수보강에 관한 연구 (A study on Strengthening and Rehabilitation of Concrete girder bridge using Multi-Stepwise Thermal Prestressing Method)

  • 김상효;안진희;김준환;이상용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.238-241
    • /
    • 2006
  • The needs for strengthening and rehabilitation of the concrete bridges are a growing concern in many countries and has been emphasized in various researches and papers. Traditional external post-tensioning method using either steel bars or tendons is commonly used as a strengthening method. However, the method has some disadvantages such as stress concentration at the anchorages. Multi-stepwise thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts on strengthening and rehabilitation of concrete girder are presented and an illustrative experiment is introduced.

  • PDF

Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams - A review

  • Ganesh, P.;Murthy, A. Ramachandra
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.101-117
    • /
    • 2019
  • Structural strengthening of reinforced concrete (RC) beams is becoming essential to meet the up-gradation of existing structures due to the infrastructure development. Strengthening is also essential for damaged structural element due to the adverse environmental condition and other distressing factors. This article reviews the state of the field on repair, retrofitting and rehabilitation techniques for the strengthening of RC beams. Strengthening of RC beams using various promising techniques such as externally bonded steel plates, concrete jacketing, fibre reinforced laminates or sheets, external prestressing/external bar reinforcement technique and ultra-high performance concrete overlay have been extensively investigated for the past four decades. The primary objective of this article is to discuss investigations on various strengthening techniques over the years. Various parameters that have been discussed include the flexural capacity, shear strength, failure modes of various strengthening techniques and advances in techniques over the years. Firstly, background information on strengthening, including repair, retrofitting, and rehabilitation of RC beams is provided. Secondly, the existing strengthening techniques for reinforced concrete beams are discussed. Finally, the relative comparisons and limitations in the existing techniques are presented.

철근콘크리트의 균열폐색 및 표면개선을 위한 전착의 응용 (Application of Electro-deposition Method for Crack Closing and Surface Improvement of Reinforced Concrete)

  • 문한영;류재석
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper, the electro-deposition method for the rehabilitation of cracked concrete, based on the electro-chemical technique, is presented. The main purpose of this paper is to apply this technique to reinforced concrete members on land. After cracking with a specified load(crack width 0.5mm), 10$\times$10$\times$20cm concrete specimens with embedded steel bars were immersed in several solutions, then a constant current density between the embedded steel in concrete and an electrode in the solution was applied for 4~20 weeks. The results indicate that electro-deposits formed in this process are able to close concrete cracks and to coat the concrete surface and that formation of these electro-deposits is confirmed to have an effect of protection against detrimental materials. Therefore, it is demonstrated that the electro-deposition method can be usefully applied for the rehabilitation technique of concrete.

아스팔트 콘크리트 포장의 최소단면 보수공법 개발을 위한 기초연구 (A Preliminary Study on Effective Rehabilitation Technique of Asphalt Concrete Pavement)

  • 조명환;김낙석;조규태;진정훈
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.475-478
    • /
    • 2007
  • The major distresses in asphalt concrete pavement are rutting and fatigue cracking. Once the distresses are observed on pavement surface, an appropriate rehabilitation method should be found. Usually, asphalt patching or overlay methods are used to improve the pavement performance. The research presents the fundamental study on effective longitudinal rehabilitation methods for asphalt concrete pavements. The rehabilitation method will be applied to rutting that is occurred asphalt Pavement surface course and longitudinal cracking or fatigue cracking with light to moderate distress levels.

  • PDF

재하상태에 따른 강판보강공법의 휨 보강효과 (Flexural Rehabilitation Effect of Pre-loaded RC Beams Strengthened by Steel Plate)

  • 한복규;홍건호;신영수;조하나
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.701-704
    • /
    • 1999
  • The purpose of this study was to investigate the effectiveness of the flexural rehabilitation of the pre-loaded reinforced concrete beams strengthened by the steel plate. Main test parameters were the existence and the magnitude of the pre-loading at the flexural of rehabilitation and the tensile reinforcement ratio of the specimens. Seven beam specimens were tested to investigate the effectiveness of the rehabilitation method. Test results showed that the ultimate load capacities of the pre-loaded specimens were higher than not-pre-loaded specimens at the rehabilitation. The cause of the pharameter was analyzed if is suggested that the bond failure between the concrete and the strengthening steel plate occured prior to the yielding of the tension reinforcement. The member flexural stiffnesses, were similar regardless of the load conditions at retrofit and failure modes showed brittle aspect caused by rip-off failure.

  • PDF

재하상태에 따른 탄소섬유보강공법의 휨 보강효과 (Flexural Rehabilitation Effect of Pre-loaded Reinforced Concrete Beams Strengthened by C.F.S)

  • 한복규;홍건호;신영수;조하나;정혜교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.691-696
    • /
    • 1999
  • This paper is aimed to investigate flexural rehabilitation effect o pre-loaded reinforced concrete beams strengthened by carbon fiber sheet. Main Test parameters are reinforcement ratio and the magnitude of pro-loading and seven test beams are analyzed rehabilitation effect by carbon fiber sheet, load-deflection, failure mode, stress of reinforcing bar by the magnitude of pre-loading. Test results show that internal force was showed pre-loaded specimens lower than no-loaded specimens during rehabilitation and changing stiffness was showed in the same was and failure mode showed brittle failure from all specimens.

  • PDF