• Title/Summary/Keyword: concrete plates

Search Result 538, Processing Time 0.026 seconds

Transverse and longitudinal partial interaction in composite bolted side-plated reinforced-concrete beams

  • Oehlers, D.J.;Nguyen, N.T.;Ahmed, M.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.553-563
    • /
    • 1997
  • A procedure is being developed for bolting plates to the sides of existing reinforced concrete beams to strengthen and stiffen them. Unlike standard composite steel and concrete beams in which there is longitudinal-partial-interaction at the steel/concrete interface (that is slip along the length of the beam), composite bolted side-plated reinforced-concrete beams are unique in that they also exhibit transverse-partial-interaction, that is slip transverse to the length of the beam. In this work, the fundamental mathematical models for transverse-partial-interaction and its interaction with longitudinal-partial-interaction are developed. The fundamental models are then further developed to determine the number of connectors required to resist the transverse forces and to limit the degree of transverse-partial-interaction in bolted side-plated reinforced concrete beams.

A Study for Structural Capacity Evaluation of Embedded Steel Plate Connected with Prestressed Concrete Beam to Build Large Space Educational Facilities (대공간 교육시설 축조를 위한 프리스트레스트 보에 사용되는 접합 강재의 성능평가에 대한 연구)

  • Lee, Kyoung-Hun
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • An experimental study to evaluate structural capacity of an embedded plate connected with prestressed concrete beam was performed. Embedded steel plates and prestressed concrete beam were connected with stud-bolts at the ends of concrete beam specimens. About 1,000 kN concentrated load was applied at 450mm away from the end of beam specimen. A 3,000 kN capacity static Oil-jack was used to direct concentrated load. The maximum strain of stud-bolt recorded $90{\times}10^{-6}$(mm/mm) and wide width cracks were not founded. Any falling failures of concrete and large deformations were not founded either between steel plate and prestressed concrete specimen. As a result, construction performance can be improved using this embedded steel plate connection system apply to large space educational facilities.

Performance Evaluation of Perfobond Rib FRP Shear Connectors for Composition between FRP and Concrete (FRP-콘크리트 합성을 위한 퍼포본드 전단 연결재의 성능 평가)

  • Park, Sung-Yong;Cho, Jeong-Rae;Hwang, Hoon-Hee;Cho, Keun-Hee;Baek, Dong-Youl;Kim, Sung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.297-300
    • /
    • 2006
  • One of main issues of the FRP-concrete composite member is shear connection between FRP and concrete in order to secure composite behavior of FRP and concrete. To solve this problem, perfobond rib FRP shear connector is introduced for the mechanical shear connection. In this study, experimental study was carried out on the perfobond rib FRP shear connectors in order to develop the effective details of perfobond rib FRP shear connectors. Pull-out test specimens were manufactured with FRP plate with holes embedded in concrete block. Main parameters considered in this study were diameter of holes, ratio of spacing between the centres of holes to the diameter of holes, and thickness of FRP plates. Test results are discussed according to above parameters compared with other empirical expressions for steel perfobond rib connector.

  • PDF

Design and Site Installation of Outdoor Sculpture of Light Emotion Friendly Concrete (감성친화형콘크리트(LEFC) 실외 조형물 디자인 및 현장설치)

  • Seo, Seung-Hoon;Kim, Soo-Yeon;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.142-143
    • /
    • 2020
  • A study was conducted on the production of LEFC using the Precast method, not the on-site construction. LEFC, Light Emotion Friendly Concrete, has the advantage of plastic rods being inserted to allow light to transmit, but because of the lack of adhesion to concrete, it leads to a decline in mechanical performance and durability. Therefore, it is necessary to apply precasting techniques to ensure homogeneous and superior quality of LEFC. In this study, wooden molds were used and plastic rods were arranged on porous acrylic plates. Prototyping was carried out with a UHPC mix proportioning to ensure flowability, self-consolidating performance and mechanical performance.

  • PDF

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.

Shear Behaviour of RC Beams Strengthened by Multi directional channel-type FRP Plate (다방향 채널형 FRP판으로 보강된 철근콘크리트 보의 전단거동)

  • Han, Jae-Won;Hong, Ki-Nam;Han, Sang-Hoon;Kwon, Yong-Kil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.173-176
    • /
    • 2008
  • The aim of this paper is to clarify the shear behavior of RC beams strengthened with channel-type Fiber Reinforced Polymer(FRP) plates. Fourteen RC beams were specifically designed. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with channel-type Fiber Reinforced Polymer(FRP) plates, a brittle debonding failure of beams bonding FRP in the concrete surface can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

  • PDF

Nonlinear Fracture Finite Element Model of Reinforced Concrete Plates (철근콘크리트판의 비선형 파괴 유한요소 모델에 관한 연구)

  • Jin, Chi Sub;Cha, Young Soo;Eom, Jong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1988
  • A general finite element method is developed to analyze reinforced concrete plates under dead loads and monotonically increasing live loads. This method can be used to trace the load-deformation response and crack propagation through elastic, inelastic and ultimate ranges. The internal concrete and steel stresses can also be determined for any stage of the response history. A layered 8 node isoparametric element taking account of coupling effect between the membrane and the bending action is developed. An incremental tangent stiffness method is used to obtain a numerical solution. Validity of the method is studied by comparing the numerical solutions with other results.

  • PDF

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.