• Title/Summary/Keyword: concrete pipes

Search Result 159, Processing Time 0.021 seconds

Status and Response Strategies of Carbon Labeling in Landscape Architecture (조경분야 탄소성적표지제도 적용실태 및 대응전략)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.709-720
    • /
    • 2015
  • After analyzing the actual acquisition status of carbon labeling by year and by product for the past four years, as well as its certification in the construction-related sectors of greenhouse gas emission, this study attempted to present the problems and coping strategies upon issuing the carbon labeling certification in the landscape architecture. During the period of this analysis, the carbon labelings were acquired by 134 enterprises, 267 workplaces, and 735 products, while the percentage of acquisition was highest in the regular non-durable goods(49%), followed by energy-consuming durable goods(26%), regular production goods (19%), regular durable goods(3%), and service(3%). Furthermore, the acquisition certifications in construction sectors, were highest in the various pipes/panel(8 cases), followed by concrete(6 cases), gypsum board(4 cases), and landscape architecture materials(2 cases). The landscape architecture only had two cases in the acquisition certification for the first time in 2012, which accounted for 0.27% of the entire certification products, due to the uncertainty in the process, the lack of professionalism, and the lack of comprehension. However, the study conducted on the coping strategies for carbon labeling in the landscape architecture revealed the following: (1) regular reporting system management through the division of labor in the head office and factories, (2) the building of objective DB through the adoption of data management programs such as SAP, (3) continuous promotion and vitalization of the incentive system, (4) the adoption of mandatory or preferential application system in landscaping projects, management, and bidding, (5) enhancement of elasticity in deliberation of certification by recruiting experts in the landscape architecture sectors, and (6) provision of incentives for the cooperative firms acquiring the certification and support for their participation.

A Study on Mechanical Properties for Recycling of PVC Scraps (PVC 스크랩의 재활용 촉진을 위한 기계적 물성에 관한 연구)

  • Kye, Hyoungsan;Lee, Yong Moo;Han, Jaemyung;Hong, Suk won;Kim, Yungsoo;Lee, Dong hyun;Bae, Jong wook
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.45-53
    • /
    • 2015
  • There are few studies on the effects of different sources of PVC scraps generated after the end-of-life PVC products and these scraps are used to prepare PVC products of low quality. In this paper, rigid PVC scraps from different sources such as clothes, pipes, and others were investigated to incorporate into virgin PVC compounds as a part of efforts to recycle various PVC scraps effectively. It was found that the tensile strength and impact strength of the PVC compounds generally decreased with increasing the content of PVC scraps. The impact properties of scrap were in order of CC > PC > RC, tensile strength were PC > CC > RC and Vicat softening temperature shows no specific tendency. CC scraps contents of 50 phr of virgin PVC resin showed 80 %, and PC scrap with 50 phr of virgin resin showed 50% of the mechanical properties with virgin PVC.

Research on the Load Reduction Effect Using EPS (EPS의 압축성을 이용한 토압저감효과에 관한 연구)

  • 김진만;조삼덕;최봉혁;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • For the last 30 years, the use of EPS as a lightweight filling material has grown significantly throughout the world. The fields of applying EPS block have also increased. The most representative example in geotechnical applications is using EPS block as a compressible inclusion that causes the reduction of static earth pressure on earth-retaining wall, bridge abutment and pipes. EPS blocks have a good workability by its lightweight characteristic and a uniform engineering property with the change of its density. Also EPS blocks have best material property as a compressible inclusion. This paper analyzes that the compressible inclusion function of EPS causes the reduction of static earth pressure on retaining wall and concrete box culvert. A series of in-situ tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on in-situ test, it is found that the magnitude of static earth pressure was reduced to about 20% for the retaining wall and about 45∼53% for the box culvert compared with theoretical active earth pressure.

Study on Thermal Stress Occurred in Concrete Energy Pile During Heating and Cooling Buildings (냉난방 가동 모사에 따른 콘크리트 에너지파일의 열응력 해석에 대한 연구)

  • Sung, Chihun;Park, Sangwoo;Kim, Byungyeon;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • The energy pile, used for both structural foundations and heat exchangers, brings about heat exchange with the ground formation by circulating a working fluid for heating and cooling buildings. As heat exchange occurs in the energy pile, thermal stress and strain is generated in the pile body and surrounding ground formation. In order to investigate the thermo-mechanical behavior of an energy pile, a comprehensive experimental program was conducted, monitoring the thermal stress of a cast-in place energy pile equipped with five pairs of U-type heat exchanger pipes. The heating and cooling simulation both continued for 30 days. The thermal strain in the longitudinal direction of the energy pile was monitored for a 15 operation days and another 15 days monitoring followed, without the application of heat exchange. In addition, a finite element model was developed to simulate the thermo-mechanical behavior of the energy pile. A non-linear contact model was adopted to interpret the interaction at the pile-soil interface, and thermal-induced structure mechanics was considered to handle the thermo-mechanical coupled multi-field problem.

An experimental Study on the Structural Performance Evaluation of One-way Hollow Core Slab (일방향 중공 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Kim, Dong Baek;Song, Dae Gyeom;Choi, Jung Ho;Cho, Hyun Sang
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Purpose: Recently, As the size of the structure increased, the necessity of reducing its weight was raised. To reduce weight In concrete structures, a hollow slab is proposed as an alternative for weight reduction effect. Method: It is difficult to construct the hollow body due to buoyancy, and the shear performance is insufficient due to the decreased cross section. Slabs were fabricated using unidirectional hollow bodies such as PVC pipes, and experiments were conducted about construction performance and structural performance. Results: The buoyancy preventive device has been improved the construction performance by preventing floating hollow body, it has been confirmed that it has adequate performance to be used as a hollow slab system because it has enough expected shear performance. Coclusion: Hollow ratio has a little connection with bending performance, but after the yielding load, it is necessary to consider the secondary stiffness of structure, and is is supposed that the decrease of shear performance with the increase of hollow core ratio can be complemented with shear reinforcement.

Image Processing of GPR Detection Data (GPR 탐사 데이터의 이미지 처리)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • To get the empirical data of GPR detection and to develop the image prosessing program of GPR detection data, GPR detection were proceed by the underground pipes and cavities buried in the Chamber. In the case of non pavement and asphalt pavement, water filled cavity that was buried in 0.7m depth was able to detection. But in the case of 1.0 m and 1.3 m buring depth, water filled cavity was not able to detection. In the case of non-reinforced and reinforced concrete pavement, it was difficult to detect the cavity caused by signal interference. GPRiPP programs was developed for image processing of the GPR detection data. The major processing algorithm were background removal, stacking and gain function. With proper image processing of gain function and background removal in GPRiPP program, it was showed that similar results can be obtained with conventional image processing program.

A Study on Seismic Protection Equipment for Fire Pipes Installed on Buildings (건축물에 설치되는 소방용 배관의 내진장치에 관한 연구)

  • Lim, Geon-Tae;Lim, Sang-Ho
    • Industry Promotion Research
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study is a technology related to a seismic protection device for a fire pipe for installation in a building such as an apartment or a building. The fire pipe is fixed to the base panel by fastening bolts so as to flow left and right. The present invention relates to an earthquake-resistant apparatus for a fire-extinguishing piping, which is capable of minimizing damages caused by an earthquake in order to prevent damages and breakage of a fire-extinguishing pipe by mitigating earthquakes, vibrations, It is connected to an insert plate embedded in concrete or ceiling hanger bolts formed at regular intervals on the ceiling to keep the piping constant from the ceiling and to keep the horizontal condition of the piping always constant so that the piping relaxes or sags And to effectively prevent damage to the piping. The can get.

Study on Identification Procedure for Unidentified Underwater Targets Using Small ROV Based on IDEF Method (소형 ROV를 이용한 IDEF0 기반의 수중 미확인 물체 식별절차에 관한 연구)

  • Baek, Hyuk;Jun, Bong-Huan;Yoon, Suk-Min;Noh, Myounggyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.289-299
    • /
    • 2019
  • Various sizes of ROVs are being utilized in offshore industrial, scientific, and military applications all around the world. Because of innovative developments in science and technology, image acquisition devices such as sonar devices and cameras have been reduced in size and their performance has been improved. Thus, we can expect better accuracy and higher resolution even in the case of exploration using a small ROV. The purpose of this paper is to prepare a standard procedure for the identification of unidentified hazardous materials found during the National Oceanographic Survey. In this paper, we propose an IDEF (Integrated DEFinition) method modeling technique to identify unidentified targets using a small ROV. In accordance with the proposed procedure, an ROV survey was carried out on target No.16 with a four-ton-class fishing boat as a support vessel on September 18th of 2018 in the sea near Daebu Island. Unidentified targets, which were not known by the multi-beam data obtained from the ship, could be identified as concrete pipes by analyzing the HD camera and high-resolution sonar images acquired by the ROV. The whole proposed procedure could be verified, and the survey with the small ROV required about 10 days to identify the target in one place.

Analysis of the Correlation between the Thickness of Support Pin of Pipe Support and the Compressive Load (파이프 서포트의 지지핀 두께와 압축하중의 상관관계 분석)

  • Choi, Myeong Ki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.36-43
    • /
    • 2022
  • Generally, in construction sites, the pipe support installation workers often use support pins of 9~10 mm which are much smaller than the safety standard sizes for work convenience. Although the safety certification standard thickness of the support pins is 11 mm, and the supervisors are often indifferent to this. Hence, products with far lower performance than the pipe support safety certification value of 40,000 N, which is applied in the supporting post-structural review, are used. Accordingly, this acts as a factor causing collapse accidents in the process of pouring concrete at the construction site. Therefore, this study performed compression experiments on new and reused pipe supports to determine how the thickness of the support pins affects the structural compression performance of the pipe support by considering the thickness of the support pins as a critical variable among various factors affecting the pipe support performance. In the course of the study, the compression test of the pipe support (V2, V4) for the new products showed that only 14 (58.3%) of the total 24 samples satisfied the safety certification standard value of 40,000 N, which indicates that more thorough quality control is required in the manufacturing process. Additionally, comparing the thickness of the support pins and their fracture shape shows that the pipes with support length of 4.0 m or longer are much more affected by the buckling of the entire length than the thickness of the support pins. Of the several factors affecting the performance of reused pipe supports, it was found that, similar to the new products, the use of support pins, with thickness of 12 mm rather than 11 mm, can satisfy the safety certification value more appropriately. Therefore, regardless of the state of usage, it could be concluded that it is necessary to use 12 mm products, whose thickness is larger than that of the safety certification standard value of 11 mm, to improve the performance of the pipe supports.

Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model (CNN-LSTM 합성모델에 의한 하수관거 균열 예측모델)

  • Jang, Seung-Ju;Jang, Seung-Yup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.