• 제목/요약/키워드: concrete pipes

검색결과 159건 처리시간 0.024초

진동수 해석을 통한 콘크리트 압송관 관리 시스템공법 기초연구 (The frameworks of frequency analysis based concrete conveying pipes in high-rise buildings)

  • 이민우;최민교;양대학;박희성;한승우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.102-103
    • /
    • 2018
  • Recentely as high-rise buildings have been constructed, methods of managing concrete conveying pipes and preventing pipes from being blocked are important. The current methods determined by labors' experiences are not accurate and not efficient. The pipes vibrated and vibration frequencies were analyzed. The results obtained in this study showed that difference of the left concrete volume in pipes causes contrast of amplitude. Therefore, this study suggests that a prediction system can manage pipes by using vibration frequencies.

  • PDF

A new method solving the temperature field of concrete around cooling pipes

  • Zhu, Zhenyang;Qiang, Sheng;Chen, Weimin
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.441-462
    • /
    • 2013
  • When using the conventional finite element method, a great number of grid nodes are necessary to describe the large and uneven temperature gradients in the concrete around cooling pipes when calculating the temperature field of mass concrete with cooling pipes. In this paper, the temperature gradient properties of the concrete around a pipe were studied. A new calculation method was developed based on these properties and an explicit iterative algorithm. With a small number of grid nodes, both the temperature distribution along the cooling pipe and the temperature field of the concrete around the water pipe can be correctly calculated with this new method. In conventional computing models, the cooling pipes are regarded as the third boundary condition when solving a model of concrete with plastic pipes, which is an approximate way. At the same time, the corresponding parameters have to be got by expensive experiments and inversion. But in the proposed method, the boundary condition is described strictly, and thus is more reliable and economical. And numerical examples were used to illustrate that this method is accurate, efficient and applicable to the actual engineering.

FE analysis of RC pipes under three-edge-bearing test: Pocket and diameter influence

  • Kataoka, Marcela Novischi;da Silva, Jefferson Lins;de Oliveira, Luciane Marcela Filizola;El Debs, Mounir Khalil
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.483-490
    • /
    • 2017
  • This paper studies on the behavior of reinforced concrete (RC) pipes used in basic sanitation in the conduction of storm water and sanitary sewer. Pipes with 800 mm and 1200 mm in diameter were analyzed. The 800 mm pipes were built with simple reinforcement and the 1200 mm pipes with double reinforcement. For the two diameters of pipes the presence or absence of the pocket was evaluated, and the denomination of each one is spigot and pocket pipe (SPP) and ogee joint pipe (OJP), respectively. The 3D numerical models reproduce the three-edge-bearing test that provides information about the strength and stiffness of the reinforced concrete pipes. The validation of the computational models was carried out comparing the vertical and horizontal displacements on the springline and crown/invert and it was also evaluated the reinforcement strains and the crack pattern. As a main conclusion, the numerical models represented satisfactorily the behavior of the pipes and can be used in future studies in parametric analysis.

레진 콘크리트로 제작한 하수관의 성능 평가 (The Evaluation of Performance of Drain Pipes manufactured with Resin Concrete)

  • 서정인;유성원;전성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.57-62
    • /
    • 2002
  • Resin concrete has better properties than regular cement concrete in making structures such as manholes, pipes, etc. This study is to evaluate the performance of drain pipes made with resin concrete for the development its application. The test results have been checked by JSWAS K-11, because Korea does not have the code for its check-up. They satisfied all the requirements.

  • PDF

Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.745-753
    • /
    • 2017
  • Dynamic analysis of a concrete pipes armed with Silica ($SiO_2$) nanoparticles subjected to earthquake load is presented. The structure is modeled with first order shear deformation theory (FSDT) of cylindrical shells. Mori-Tanaka approach is applied for obtaining the equivalent material properties of the structure considering agglomeration effects. Based on energy method and Hamilton's principle, the motion equations are derived. Utilizing the harmonic differential quadrature method (HDQM) and Newmark method, the dynamic displacement of the structure is calculated for the Kobe earthquake. The effects of different parameters such as geometrical parameters of pipe, boundary conditions, $SiO_2$ volume percent and agglomeration are shown on the dynamic response of the structure. The results indicate that reinforcing the concrete pipes by $SiO_2$ nanoparticles leads to a reduction in the displacement of the structure during an earthquake.

Reduction of Railway-induced Vibration using In-filled Trenches with Pipes

  • Hasheminezhad, Araz
    • International Journal of Railway
    • /
    • 제7권1호
    • /
    • pp.16-23
    • /
    • 2014
  • Reduction in railway-induced vibrations in urban areas is a very challenging task in railway transportation. Many mitigation measures can be considered and applied. Among these, a little attention has been paid to trenches. In this study, a numerical investigation on the effectiveness of in-filled trenches with pipes in reducing railway vibrations due to passing trains is presented. Particularly, a series of two-dimensional dynamic analysis was performed to model the behavior of ballasted railway track under harmonic load with ABAQUS software as a Finite Element method. In so doing, two types of in-filled trenches with pipes with steel and concrete materials have been investigated in this paper. In addition, effectiveness of pipes made of steel and concrete, filled with loose sand and clay in railway-induced vibration reduction has been assessed. The results point out that using in-filled trench with pipes does not effective a lot on railway-induced vibration reduction in comparison to other railway-induced vibration reduction methods. However, in-filled trenches with steel pipes are much more effective than in-filled trenches with concrete pipes. Moreover, filling pipes with loose sand and clay does not have any effect on vibration reduction efficiency of these in-filled trenches.

실리카흄을 혼입한 원심력 콘크리트관의 강도특성 (Strength Charcteristics of Centrifugal Pipes With Silica Fume Concrete)

  • 김태경
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.31-38
    • /
    • 1996
  • This experimental study was conducted to analyze the characteristics of centrifugal pipes which were made of silica fume concrete. External load tests showed that maximum external load ranged from 1,100~5,300kgf/m with thickness ratio(t/D) of between 4.5%~10.0%. Correlation between thickness ratios and external loads was excellent with $R^2$ of 0.99. Respective correlation between measured and computed vertical deformation was good with $R^2$ of higher than 0.90. And therefore, vertical deformation and tensile stress of centrifugal concrete pipes may be theoretically computed with a good precision.

  • PDF

진동 및 전압 철근 콘크리트관의 종.횡단배수관 적용성 검토에 관한 연구 (Study on the possible application of Vibrated and Rolled reinforced concrete pipe to vertical.crossing water distribution system)

  • 박도경;이명규;양극영
    • 한국건축시공학회지
    • /
    • 제6권2호
    • /
    • pp.111-117
    • /
    • 2006
  • In case of carrying out vortical crossing water distribution system in expressways or general roads construction, VR(Vibrated and Rolled reinforced concrete) pipes are restricted because of their specification of reinforced spun concrete pipe or on-site made pipe. Therefore, in order to apply VR pipes to those constructions, through the structural behavior experiments of the pipes, VR pipes are compared and verified with reinforced spun concrete pipe and the results are obtained as the following. From the experiments and analyses of Pipe Stiffness(PS) of the pipes, cracking loading is approved to satisfy the KS regulations. Through a direct load test, the cracking loading strength and the maximum load test of VR pipe is larger compared with reinforced spun concrete pipe. Particularly, even if side weld is thin, there is no little change in the cracking strength of VR pipe. The results of the direct load test analysis show that the structural behavior of VR pipe is equivalent or higher compared with reinforced spun concrete pipe in performance and VR pipe could be used as the water distribution pipe for roads. In this study, through pipe stiffness, direct load test and load teat on earth, reinforced spun concrete pipe and VR pipe are compared. And as a result, the structural behavior of VR pipe is comprehensively excellent. From the structural behavior tests, VR pipe's section shows more thickness and has uniform characteristics so that VR pipe is considered more favorable than reinforced spun concrete pipe.

주택단지 오수용 콘크리트 흄관의 부식속도 측정 사례 (A Case Study on Corrosion Rates of Concrete Sewer Pipes in Housing Sites)

  • 김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.550-553
    • /
    • 2006
  • This study measured corrosion rates for checking and analysis of Hume pipes in the housing sites. According to the result, Concrete pipe is deteriorating for twenty years by hydrogen sulfide(H2S). Investigation method applied phenolphthalein method(depth of neutrality). Phenolphthalein method measured average depth from concrete surface to coloring point by red after spraying phenolphthalein solution. A result of investigation, Life span of Hume pipe in the housing site is investigated of twenty years.

  • PDF

CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure)

  • 이장환;황병준;김제섭;정근호;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF