• Title/Summary/Keyword: concrete piles

Search Result 208, Processing Time 0.024 seconds

Shear Experiments on Concrete Filled PHC Pile with Composite Shear Connectors with Rebar Holes (보강 철근 정착 홀을 갖는 합성 전단연결재를 적용한 콘크리트 충전 PHC말뚝의 전단성능 평가)

  • Kim, Jeong-Hoi;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that reinforces shear force. CFP pile (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) developed in this study increases the shear stress by placing composite shear connector and filling the concrete into hollow part of the pile. By placing the reinforcement (H13-8ea) and the reinforcement (H19-8ea) into hollow section inside of PHC piles, it also improves the shear strength due to increasing steel ratio. It reinforces shear strength effectively by dowel force that is generated by putting reinforcement (H13-8) into the holes of composite shear connectors for the composite behavior of filled concrete and PHC pile. The study was reviewed and compared the calculated result of the shear strength by limit state design method highway bridge design standards (2012) and experiment result of the shear strength by KS F 4306. We can design the shear strength reasonably as the safety ratio of 2.20, 2.15, 2.05 is shown comparing to design shear strength, according to design shear strength on each cross sections and the experiment results of the CFP pile.

A Study on the Formulae for the Compressive Stresses in Concrete Piles during Driving (콘크리트말뚝 타입시 발생하는 압축응력의 산정식에 관한 연구)

  • 임종석
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.5-13
    • /
    • 1999
  • Maximum stress in pile is developed when it is driven. If the stress is greater than allowable stress of the pile, the pile will be damaged and result in stability problem. Therefore, the stress should be estimated correctly beforehand and overstress should be prevented during pile driving. There are many methods to estimate compressive stresses in concrete piles when they are driven. Nowadays, computer analysis on wave equation offers a satisfactory results. But. under certain circumstances, application of this method is difficult. Then, estimation of the stress utilizing simple formulae might be practical. In this study, relatively reasonable formulae were selected and the stresses which were measured in situ and calculated from the formulae were compared and analysed. The results show that the calculated values from Uto and Huyuki's formula were reasonably accurate and more accurate values were acquired if the values are modified by multiplying the reduction factors according to ground and construction conditions.

  • PDF

Strengthening method against Overturn of Plain Concrete Gravity Pier for Open-Steel-Plate-Girder Railway Bridges (철도판형교 무근콘크리트 교각의 전도 보강기법)

  • Lee, Jun-S.;Choi, Eun-Soo;Rhee, In-Kuy;Lee, Joo-B.
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1165-1173
    • /
    • 2007
  • Open-Steel-Plate-Girder railway bridges, in general, have plain concrete gravity pier without piles at foundations. Such piers are vulnerable to be overturned against braking forces and ground shakings during an earthquake. Thus, this study suggests a strengthening method using earth anchors to improve the resistance of plain concrete gravity piers to the overturn of themselves. Also, a filed test was performed for the as-built and the strengthened pier and the test results were compared to assess the strengthening effect. The earth anchors increased the ultimated capacity for the pier's overturn. Finally, a FE analysis was conducted using nonlinear elements for soil to understand the distribution of the soil stresses for the as-built and the strengthened pier.

  • PDF

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile (병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가)

  • Park, Sangwoo;Kim, Byeongyeon;Sung, Chihun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.361-375
    • /
    • 2015
  • An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

Horizontal Bearing Behavior of Group Suction Piles by Numerical Analysis (수치해석을 이용한 그룹형 석션파일의 수평방향 지지거동 분석)

  • Lee, Ju-Hyung;Lee, Si-Hoon;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.119-127
    • /
    • 2013
  • Recently, several researches on the development of new economical foundation types have been performed to support floating structures as many offshore structures have been constructed. This study focused on the evaluation of bearing capacity of group suction piles, which are connected by a concrete pile cap. The offshore floating structures are mainly subjected to horizontal loading, so the horizontal bearing capacities of the group suction piles were analyzed by performing 3-dimensional finite element analyses. The group suction piles are expected to behave as a rigid pile due to its shallow embedded depth. Therefore, the detailed soil modeling was necessary to simulate the bearing behavior of soils under low confining pressure. The modulus and the strength of soils were modelled to increase with effective confining pressure in soils. For the parametric study, the center-to-center spacing between piles was varied and two soil types of clay and sands were applied. The analyses results showed that the yielding load of the group pile increased with the increase of the pile spacing and the yielding load of the group piles with 5D spacing was about 3 times larger than that of the single pile with free rotation.

Analysis of Helical Pile Behavior in Sands Varying Helix Pitch Based on Numerical Analysis Results (사질토에 근입된 헬릭스 피치에 따른 헬리컬 파일의 수치해석적 거동분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.29-40
    • /
    • 2018
  • Oil sands, which are largely distributed in Canada and Venezuela, are a mixture of crude oil and sandy soils. In order to extract crude oil from oil sands, construction of massive oil sand plants is required. Generally, the typically-used foundation types of the oil sand plant are driven piles and cast-in-place piles. Most of the oil sand plants are located in cold and remote regions. Installation of driven piles in frozen or organic surface soils is difficult due to high resistance and installation equipment accessability, while the cast-in-place pile has concrete curing problem due to cold temperature. Helical pile can be installed quickly and easily using rotation with a little help of vertical load. As the installation of helical pile is available using a small and light-weight installation equipment, accessibility of installation equipment is improved. The helical pile has an advantage of easy removal by rotation in reverse direction compared with that of installation. Furthermore, reuse of removed helical piles is possible when the piles are structurally safe. In this study, the behavior of helical piles varying helix pitch was analyzed based on the numerical analysis results. Numerical model was calibrated based on the results of model helical pile tests in laboratory. The ultimate helical pile loads, the displacement of each helix attached to the shaft of the helical pile, and the load sharing ratio of each helix were analyzed.

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

An Experimental Study for the Compression Strength of Hybrid CFFT Pile (FRP 콘크리트 합성말뚝의 압축강도에 대한 실험적 연구)

  • Choi, Jin-Woo;Park, Joon-Seok;Nam, Jung-Hoon;An, Dong-Jun;Kang, In-Kyu;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.30-39
    • /
    • 2011
  • In this paper, we persent the results of on experimental investigations pertaining to the structural behavior of new type of concrete filled fiber reinforced plastic circular tubes (i.e., hybrid CFFT, HCFFT) which are suggested in order to mitigate the problems associated with the concrete filled steel-concrete composite tube (CFT) and the concrete filled fiber reinforced plastic tube (CFFT). It is found that when the HCFFT is used in the construction of pile foundation the HCFFT pile can transfer axial as well as flexural loads from the superstructure to the underground effectively in comparison with CFT and CFFT piles.