• Title/Summary/Keyword: concrete piles

Search Result 207, Processing Time 0.02 seconds

Effects of infilled concrete and longitudinal rebar on flexural performance of composite PHC pile

  • Bang, Jin Wook;Lee, Bang Yeon;Lee, Byung Jae;Hyun, Jung Hwan;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.843-855
    • /
    • 2014
  • Concrete infill and reinforcement are one of the most well-known strengthening methods of structural elements. This study investigated flexural performance of concrete infill composite PHC pile (ICP pile) reinforced by infill concrete and longitudinal rebars in hollow PHC pile. A total four series of pile specimens were tested by four points bending method under simply supported conditions and investigated bending moment experimentally and analytically. From the test results, it was found that although reinforcement of infilled concrete on the pure bending moment of PHC pile was negligible, reinforcement of PHC pile using infilled concrete and longitudinal rebars increase the maximum bending moment with range from 1.95 to 2.31 times than that of conventional PHC pile. The error of bending moment between experimental results and predicted results by nonlinear sectional analysis on the basis of the conventional layered sectional approach was in the range of -2.54 % to 2.80 %. The axial compression and moment interaction analysis for ICP piles shows more significant strengthening effects of infilled concrete and longitudinal rebars.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF

Group Effects in Pile Group under Lateral Loading (수평력을 받는 군말뚝에서의 말뚝의 상호작용)

  • Ahn Kwang Kuk;Kim Hong Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.47-55
    • /
    • 2005
  • This paper describes the results for a numerical analysis of'single piles and pile oops in clayey soils subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single piles, pile diameter (1.0 m, 0.5 m), pile length (7.0 m, 10.0 m), and pile groups. The 1$\times$3 pile group was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles, the effects of lateral stresses in front of and on the sides of the piles, and the effect of a cap on the lateral resistance of the leading pile. The soil was modeled using Cam-clay constitutive relationship and the pile was considered as a elastic circular concrete pile. The results show that the size of the cap influences lateral capacity of sin pile. The results also show in pile groups, the pile-soil-pile interaction and the cap effect the resistance in the leading pile, and the p-multiplier for the leading pile of greater than 1.0 was able to be obtained.

Behavior of Pile Groups in Multi-layers Soil under Lateral Loading (다층지반에서 횡하중을 받는 군말뚝의 거동)

  • Kim, Yongmoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • This paper deals with the results for a numerical analysis of single piles and pile groups in multi-layers soil(granite soil-clay-granite soil) subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single pile, pile diameter (0.5m), pile length (10m), and pile groups. Numerical analyses were conducted by variation of spacing piles(s=3D, 4D, 5D) to compare the behaviour of single pile without cap and group pile. The $1{\times}3$ pile group(leading pile, middle pile, trail pile) was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles. The analysis model of clay and the material of granite soil was modeled by using Druker-Prager constitutive relationship and existing treatise respectively. The pile was considered as a elastic circular concrete pile. As a result, the more pile space was extended, the value of P-multiplier is appeared to be less effective to leading pile. The lateral resistance of single-layer showed approximately 4-20% larger than the multi-layers.

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

Flexural and shear behavior of large diameter PHC pile reinforced by rebar and infilled concrete

  • Bang, Jin-Wook;Lee, Bang-Yeon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 2020
  • The purpose of this paper is to provide an experimental and analytical study on the reinforced large diameter pretensioned high strength concrete (R-LDPHC) pile. R-LDPHC pile was reinforced with infilled concrete, longitudinal, and transverse rebar to increase the flexural and shear strength of conventional large diameter PHC (LDPHC) pile without changing dimension of the pile. To evaluate the shear and flexural strength enhancement effects of R-LDPHC piles compared with conventional LDPHC pile, a two-point loading tests were conducted under simple supported conditions. Nonlinear analysis on the basis of the conventional layered sectional approach was also performed to evaluate effects of infilled concrete and longitudinal rebar on the flexural strength of conventional LDPHC pile. Moreover, ultimate strength design method was adopted to estimate the effect of transverse rebar and infilled concrete on the shear strength of a pile. The analytical results were compared with the results of the bending and shear test. Test results showed that the flexural strength and shear strength of R-LDPHC pile were increased by 2.3 times and 3.3 times compared to those of the conventional LDPHC pile, respectively. From the analytical study, it was found that the flexural strength and shear strength of R-LDPHC pile can be predicted by the analytical method by considering rebar and infilled concrete effects, and the average difference of flexural strength between experimental results and calculated result was 10.5% at the ultimate state.

Mechanical Properties of Cement Material for Energy-Foundation (EF) Structures

  • Park, Yong-Boo;Choi, Hang-Seok;Sohn, Jeong-Rak;Sim, Young-Jong;Lee, Chul-Ho
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In this study, physical characteristics of cement and/or concrete materials that are typically used for energy-foundation (EF) structures have been studied. The thermal conductivity and structural integrity of the cement-based materials were examined, which are commonly encountered in backfilling a vertical ground heat exchangers, cast-in-place concrete piles and concrete lining in tunnel. For this purpose the thermal conductivity and unconfined compression strength of cement-based materials with various curing conditions were experimentally estimated and compared. Hydration heat generated from massive concrete in the cast-in-place concrete energy pile was observed for 4 weeks to estimate its dissipation time in the underground. The hydration heat may mask the in-situ thermal response test (TRT) result performed in the cast-in-place concrete energy pile. It is concluded that at least two weeks are needed to dissipate the hydration heat in this case. In addition, a series of numerical analysis was performed to compare the effect of thermal property of the concrete material on the cast-in-place pile.

Shear Experiments on Concrete Filled PHC Pile with Composite Shear Connectors with Rebar Holes (보강 철근 정착 홀을 갖는 합성 전단연결재를 적용한 콘크리트 충전 PHC말뚝의 전단성능 평가)

  • Kim, Jeong-Hoi;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that reinforces shear force. CFP pile (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) developed in this study increases the shear stress by placing composite shear connector and filling the concrete into hollow part of the pile. By placing the reinforcement (H13-8ea) and the reinforcement (H19-8ea) into hollow section inside of PHC piles, it also improves the shear strength due to increasing steel ratio. It reinforces shear strength effectively by dowel force that is generated by putting reinforcement (H13-8) into the holes of composite shear connectors for the composite behavior of filled concrete and PHC pile. The study was reviewed and compared the calculated result of the shear strength by limit state design method highway bridge design standards (2012) and experiment result of the shear strength by KS F 4306. We can design the shear strength reasonably as the safety ratio of 2.20, 2.15, 2.05 is shown comparing to design shear strength, according to design shear strength on each cross sections and the experiment results of the CFP pile.