• Title/Summary/Keyword: concrete mesoscopic heterogeneity

Search Result 3, Processing Time 0.016 seconds

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Actual microstructure-based numerical method for mesomechanics of concrete

  • Chena, S.;Yueb, Z.Q.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • This paper presents an actual microstructure-based numerical method to investigate the mechanical properties of concrete at mesoscopic level. Digital image processing technique is used to capture the concrete surface image and generate the actual 3-phase microstructure of the concrete, which consists of aggregate, matrix and interfacial transition zones. The microstructure so generated is then transformed into a mesh or grid for numerical analysis. A finite difference code FLAC2D is used for the numerical analysis to simulate the mechanical responses and failure patterns of the concrete. Several cases of concrete with different degrees of material heterogeneity and under different compression loading conditions have been analysed. From the numerical results, the effects of the internal material heterogeneities as well as the external confining stresses are studied. It is shown that the material heterogeneities arising from the presence of different phases and the existence of interfacial transition zones have great influence on the overall mechanical behaviour of concrete and that the numerically simulated behaviour of concrete with or without confining stresses applied agrees quite well with the general observations reported in the literature.

The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression

  • Zhu, W.C.;Ling, L.;Tang, C.A.;Kang, Y.M.;Xie, L.M.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.257-273
    • /
    • 2012
  • Based on the heterogeneous characterization of concrete at mesoscopic level, Realistic Failure Process Analysis ($RFPA^{3D}$) code is used to simulate the failure process of concrete-filled tubular (CFT) stub columns. The results obtained from the numerical simulations are firstly verified against the existing experimental results. An extensive parametric study is conducted to investigate the effects of different concrete strength on the behaviour and load-bearing capacity of the CFT stub columns. The strength of concrete considered in this study ranges from 30 to 110 MPa. Both the load-bearing capacity and load-displacement curves of CFT columns are evaluated. In particular, the crack propagation during the deformation and failure processes of the columns is predicted and the associated mechanisms related to the increased load-bearing capacity of the columns are clarified. The numerical results indicate that there are two mechanisms controlling the failure of the CFT columns. For the CFT columns with the lower concrete strength, they damage when the steel tube yields at first. By contrast, for the columns with high concrete strength it is the damage of concrete that controls the overall loading capacity of the CFT columns. The simulation results also demonstrate that $RFPA^{3D}$ is not only a useful and effective tool to simulate the concrete-filled steel tubular columns, but also a valuable reference for the practice of engineering design.